wiki:OsgTerrainData

Version 2 (modified by Torben Dannhauer, 14 years ago) (diff)

--

Terrain Data (DEM / Textures)

The following source data could be used:

  • Digital Elevation Data
    • Free global elevation data with 3 arcs resolution: SRTM data (NASA)
    • Free local high resolution elevation models: DEM data (www.viewfinderpanoramas.org)
  • Textures/Orthophotos?
    • Free global low resolution texture data : Bluemarble Next Generation (NASA)
    • Free local low/medium resolution texture data: Landsat (NASA)
    • Commercial global medium/high resolution texture data: Landsat (atlogis.com, ...)
    • Commercial high resolution national texture data: e.g. Germany (Geocontent), USA (USGS), ...

SRTM-Data

SRTM data with 3 arcs are available for free at

Local high resolution DEM data (mainly based on SRTM)

Tip: Because SRTM data is delivery in many small .zip or tar.gz files, download and unpack it automatically: <code> wget -r ftp://xftp.jrc.it/pub/srtmV4/tiff/ for zipfile in *.zip;do unzip -o "$zipfile" -d unpacked; done </code>

US texture data

Local High and global resolution Texture and DEM data

To use LANDSAT arial images, read https://zulu.ssc.nasa.gov/mesid/tutorial/LandsatTutorial-V1.html for introduction. LANDSAT datasets are deliverey with up to seven images, each representing a different sensor with different wavelength. Three of this files (sensors for RGB) must be combined for the raw "natural" image.

The image merging is possible with gdal_merge.py (available in FWTools): <code> gdal_merge.py -o outfile.tif R_sensor.tif G_sensor.tif B_sensor.tif </code>

National high resolution data

National high resolution data is available from many companies. Germany: GeoContent

compress Data

To shift system load from HDD to CPU, compress all textures lossless with LZW. This will increase rendering time a lot, because usually the HDD ist the bottleneck.

gdal_translate -co "COMPRESS=LZW" unsw ToDo

Moon Data

To animate earth rising above moon horizon, it could be usefull to model the moon.

http://lunar.arc.nasa.gov/dataviz/datamaps/index.html