1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: Xforms.h,v |
---|
10 | * Date modified: 2004/11/12 01:34:49 |
---|
11 | * Version: 1.34 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | #ifndef _GMTL_XFORMS_H_ |
---|
36 | #define _GMTL_XFORMS_H_ |
---|
37 | |
---|
38 | #include <gmtl/Point.h> |
---|
39 | #include <gmtl/Vec.h> |
---|
40 | #include <gmtl/Matrix.h> |
---|
41 | #include <gmtl/MatrixOps.h> |
---|
42 | #include <gmtl/Quat.h> |
---|
43 | #include <gmtl/QuatOps.h> |
---|
44 | #include <gmtl/Ray.h> |
---|
45 | #include <gmtl/LineSeg.h> |
---|
46 | #include <gmtl/Util/StaticAssert.h> |
---|
47 | |
---|
48 | namespace gmtl |
---|
49 | { |
---|
50 | /** @ingroup Transforms |
---|
51 | * @name Vector Transform (Quaternion) |
---|
52 | * @{ |
---|
53 | */ |
---|
54 | |
---|
55 | /** transform a vector by a rotation quaternion. |
---|
56 | * @pre give a vector, and a rotation quaternion (by definition, a rotation quaternion is normalized). |
---|
57 | * @param result The vector to write the result into |
---|
58 | * @param rot The quaternion |
---|
59 | * @param vector The original vector to transform |
---|
60 | * @post v' = q P(v) q* (where result is v', rot is q, and vector is v. q* is conj(q), and P(v) is pure quaternion made from v) |
---|
61 | * @see game programming gems #1 p199 |
---|
62 | * @see shoemake siggraph notes |
---|
63 | * @notes for the implementation, inv and conj should both work for the "q*" in "Rv = q P(v) q*" |
---|
64 | * but conj is actually faster so we usually choose that. |
---|
65 | * @notes also note, that if the input quat wasn't normalized (and thus isn't a rotation quat), |
---|
66 | * then this might not give the correct result, since conj and invert is only equiv when normalized... |
---|
67 | */ |
---|
68 | template <typename DATA_TYPE> |
---|
69 | inline VecBase<DATA_TYPE, 3>& xform( VecBase<DATA_TYPE, 3>& result, const Quat<DATA_TYPE>& rot, const VecBase<DATA_TYPE, 3>& vector ) |
---|
70 | { |
---|
71 | // check preconditions... |
---|
72 | gmtlASSERT( Math::isEqual( length( rot ), (DATA_TYPE)1.0, (DATA_TYPE)0.0001 ) && "must pass a rotation quaternion to xform(result,quat,vec) - by definition, a rotation quaternion is normalized). if you need non-rotation quaternion support, let us know." ); |
---|
73 | |
---|
74 | // easiest to write and understand (slowest too) |
---|
75 | //return result_vec = makeVec( rot * makePure( vector ) * makeConj( rot ) ); |
---|
76 | |
---|
77 | // completely hand expanded |
---|
78 | // (faster by 28% in gcc 2.96 debug mode.) |
---|
79 | // (faster by 35% in gcc 2.96 opt3 mode (78% for doubles)) |
---|
80 | Quat<DATA_TYPE> rot_conj( -rot[Xelt], -rot[Yelt], -rot[Zelt], rot[Welt] ); |
---|
81 | Quat<DATA_TYPE> pure( vector[0], vector[1], vector[2], (DATA_TYPE)0.0 ); |
---|
82 | Quat<DATA_TYPE> temp( |
---|
83 | pure[Welt]*rot_conj[Xelt] + pure[Xelt]*rot_conj[Welt] + pure[Yelt]*rot_conj[Zelt] - pure[Zelt]*rot_conj[Yelt], |
---|
84 | pure[Welt]*rot_conj[Yelt] + pure[Yelt]*rot_conj[Welt] + pure[Zelt]*rot_conj[Xelt] - pure[Xelt]*rot_conj[Zelt], |
---|
85 | pure[Welt]*rot_conj[Zelt] + pure[Zelt]*rot_conj[Welt] + pure[Xelt]*rot_conj[Yelt] - pure[Yelt]*rot_conj[Xelt], |
---|
86 | pure[Welt]*rot_conj[Welt] - pure[Xelt]*rot_conj[Xelt] - pure[Yelt]*rot_conj[Yelt] - pure[Zelt]*rot_conj[Zelt] ); |
---|
87 | |
---|
88 | result.set( |
---|
89 | rot[Welt]*temp[Xelt] + rot[Xelt]*temp[Welt] + rot[Yelt]*temp[Zelt] - rot[Zelt]*temp[Yelt], |
---|
90 | rot[Welt]*temp[Yelt] + rot[Yelt]*temp[Welt] + rot[Zelt]*temp[Xelt] - rot[Xelt]*temp[Zelt], |
---|
91 | rot[Welt]*temp[Zelt] + rot[Zelt]*temp[Welt] + rot[Xelt]*temp[Yelt] - rot[Yelt]*temp[Xelt] ); |
---|
92 | return result; |
---|
93 | } |
---|
94 | |
---|
95 | /** transform a vector by a rotation quaternion. |
---|
96 | * @pre give a vector, and a rotation quaternion (by definition, a rotation quaternion is normalized). |
---|
97 | * @param rot The quaternion |
---|
98 | * @param vector The original vector to transform |
---|
99 | * @return the resulting vector transformed by the quaternion |
---|
100 | * @post v' = q P(v) q* (where result is v', rot is q, and vector is v. q* is conj(q), and P(v) is pure quaternion made from v) |
---|
101 | */ |
---|
102 | template <typename DATA_TYPE> |
---|
103 | inline VecBase<DATA_TYPE, 3> operator*( const Quat<DATA_TYPE>& rot, const VecBase<DATA_TYPE, 3>& vector ) |
---|
104 | { |
---|
105 | VecBase<DATA_TYPE, 3> temporary; |
---|
106 | return xform( temporary, rot, vector ); |
---|
107 | } |
---|
108 | |
---|
109 | |
---|
110 | /** transform a vector by a rotation quaternion. |
---|
111 | * @pre give a vector, and a rotation quaternion (by definition, a rotation quaternion is normalized). |
---|
112 | * @param rot The quaternion |
---|
113 | * @param vector The original vector to transform |
---|
114 | * @post v' = q P(v) q* (where result is v', rot is q, and vector is v. q* is conj(q), and P(v) is pure quaternion made from v) |
---|
115 | */ |
---|
116 | template <typename DATA_TYPE> |
---|
117 | inline VecBase<DATA_TYPE, 3> operator*=(VecBase<DATA_TYPE, 3>& vector, const Quat<DATA_TYPE>& rot) |
---|
118 | { |
---|
119 | VecBase<DATA_TYPE, 3> temporary = vector; |
---|
120 | return xform( vector, rot, temporary); |
---|
121 | } |
---|
122 | |
---|
123 | |
---|
124 | /** @} */ |
---|
125 | |
---|
126 | /** @ingroup Transforms |
---|
127 | * @name Vector Transform (Matrix) |
---|
128 | * @{ |
---|
129 | */ |
---|
130 | |
---|
131 | /** xform a vector by a matrix. |
---|
132 | * Transforms a vector with a matrix, uses multiplication of [m x k] matrix by a [k x 1] matrix (the later also known as a Vector...). |
---|
133 | * @param result the vector to write the result in |
---|
134 | * @param matrix the transform matrix |
---|
135 | * @param vector the original vector |
---|
136 | * @post This results in a rotational xform of the vector (assumes you know what you are doing - |
---|
137 | * i.e. that you know that the last component of a vector by definition is 0.0, and changing |
---|
138 | * this might make the xform different than what you may expect). |
---|
139 | * @post returns a point same size as the matrix rows... (v[r][1] = m[r][k] * v[k][1]) |
---|
140 | */ |
---|
141 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
142 | inline Vec<DATA_TYPE, COLS>& xform( Vec<DATA_TYPE, COLS>& result, const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Vec<DATA_TYPE, COLS>& vector ) |
---|
143 | { |
---|
144 | // do a standard [m x k] by [k x n] matrix multiplication (where n == 0). |
---|
145 | |
---|
146 | // reset vec to zero... |
---|
147 | result = Vec<DATA_TYPE, COLS>(); |
---|
148 | |
---|
149 | for (unsigned iRow = 0; iRow < ROWS; ++iRow) |
---|
150 | for (unsigned iCol = 0; iCol < COLS; ++iCol) |
---|
151 | result[iRow] += matrix( iRow, iCol ) * vector[iCol]; |
---|
152 | |
---|
153 | return result; |
---|
154 | } |
---|
155 | |
---|
156 | |
---|
157 | /** matrix * vector xform. |
---|
158 | * multiplication of [m x k] matrix by a [k x 1] matrix (also known as a Vector...). |
---|
159 | * @param matrix the transform matrix |
---|
160 | * @param vector the original vector |
---|
161 | * @return the vector transformed by the matrix |
---|
162 | * @post This results in a full matrix xform of the vector (assumes you know what you are doing - |
---|
163 | * i.e. that you know that the last component of a vector by definition is 0.0, and changing |
---|
164 | * this might make the xform different that what you may expect). |
---|
165 | * @post returns a vec same size as the matrix rows... (v[r][1] = m[r][k] * v[k][1]) |
---|
166 | */ |
---|
167 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
168 | inline Vec<DATA_TYPE, COLS> operator*( const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Vec<DATA_TYPE, COLS>& vector ) |
---|
169 | { |
---|
170 | // do a standard [m x k] by [k x n] matrix multiplication (where n == 0). |
---|
171 | Vec<DATA_TYPE, COLS> temporary; |
---|
172 | return xform( temporary, matrix, vector ); |
---|
173 | } |
---|
174 | |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | /** partially transform a partially specified vector by a matrix, assumes last elt of vector is 0 (the 0 makes it only partially transformed). |
---|
179 | * Transforms a vector with a matrix, uses multiplication of [m x k] matrix by a [k-1 x 1] matrix (also known as a Vector [with w == 0 for vectors by definition] ). |
---|
180 | * @param result the vector to write the result in |
---|
181 | * @param matrix the transform matrix |
---|
182 | * @param vector the original vector |
---|
183 | * @post the [k-1 x 1] vector you pass in is treated as a [vector, 0.0] |
---|
184 | * @post This ends up being a partial xform using only the rotation from the matrix (vector xformed result is untranslated). |
---|
185 | */ |
---|
186 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS, unsigned VEC_SIZE> |
---|
187 | inline Vec<DATA_TYPE, VEC_SIZE>& xform( Vec<DATA_TYPE, VEC_SIZE >& result, const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Vec<DATA_TYPE, VEC_SIZE >& vector ) |
---|
188 | { |
---|
189 | GMTL_STATIC_ASSERT( VEC_SIZE == COLS - 1, Vec_of_wrong_size_for_xform ); |
---|
190 | // do a standard [m x k] by [k x n] matrix multiplication (where n == 0). |
---|
191 | |
---|
192 | // copy the point to the correct size. |
---|
193 | Vec<DATA_TYPE, COLS> temp_vector, temp_result; |
---|
194 | for (unsigned x = 0; x < VEC_SIZE; ++x) |
---|
195 | temp_vector[x] = vector[x]; |
---|
196 | temp_vector[COLS-1] = (DATA_TYPE)0.0; // by definition of a vector, set the last unspecified elt to 0.0 |
---|
197 | |
---|
198 | // transform it. |
---|
199 | xform<DATA_TYPE, ROWS, COLS>( temp_result, matrix, temp_vector ); |
---|
200 | |
---|
201 | // convert result back to vec<DATA_TYPE, VEC_SIZE> |
---|
202 | // some matrices will make the W param large even if this is a true vector, |
---|
203 | // we'll need to redistribute it to the other elts if W param is non-zero |
---|
204 | if (Math::isEqual( temp_result[VEC_SIZE], (DATA_TYPE)0, (DATA_TYPE)0.0001 ) == false) |
---|
205 | { |
---|
206 | DATA_TYPE w_coord_div = DATA_TYPE( 1.0 ) / temp_result[VEC_SIZE]; |
---|
207 | for (unsigned x = 0; x < VEC_SIZE; ++x) |
---|
208 | result[x] = temp_result[x] * w_coord_div; |
---|
209 | } |
---|
210 | else |
---|
211 | { |
---|
212 | for (unsigned x = 0; x < VEC_SIZE; ++x) |
---|
213 | result[x] = temp_result[x]; |
---|
214 | } |
---|
215 | |
---|
216 | return result; |
---|
217 | } |
---|
218 | |
---|
219 | /** matrix * partial vector, assumes last elt of vector is 0 (partial transform). |
---|
220 | * @param matrix the transform matrix |
---|
221 | * @param vector the original vector |
---|
222 | * @return the vector transformed by the matrix |
---|
223 | * multiplication of [m x k] matrix by a [k-1 x 1] matrix (also known as a Vector [with w == 0 for vectors by definition] ). |
---|
224 | * @post the [k-1 x 1] vector you pass in is treated as a [vector, 0.0] |
---|
225 | * @post This ends up being a partial xform using only the rotation from the matrix (vector xformed result is untranslated). |
---|
226 | */ |
---|
227 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS, unsigned COLS_MINUS_ONE> |
---|
228 | inline Vec<DATA_TYPE, COLS_MINUS_ONE> operator*( const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Vec<DATA_TYPE, COLS_MINUS_ONE>& vector ) |
---|
229 | { |
---|
230 | Vec<DATA_TYPE, COLS_MINUS_ONE> temporary; |
---|
231 | return xform( temporary, matrix, vector ); |
---|
232 | } |
---|
233 | |
---|
234 | /** @} */ |
---|
235 | |
---|
236 | /** @ingroup Transforms |
---|
237 | * @name Point Transform (Matrix) |
---|
238 | * @{ |
---|
239 | */ |
---|
240 | |
---|
241 | |
---|
242 | /** transform point by a matrix. |
---|
243 | * multiplication of [m x k] matrix by a [k x 1] matrix (also known as a Point...). |
---|
244 | * @param result the point to write the result in |
---|
245 | * @param matrix the transform matrix |
---|
246 | * @param point the original point |
---|
247 | * @post This results in a full matrix xform of the point. |
---|
248 | * @post returns a point same size as the matrix rows... (p[r][1] = m[r][k] * p[k][1]) |
---|
249 | */ |
---|
250 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
251 | inline Point<DATA_TYPE, COLS>& xform( Point<DATA_TYPE, COLS>& result, const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Point<DATA_TYPE, COLS>& point ) |
---|
252 | { |
---|
253 | // do a standard [m x k] by [k x n] matrix multiplication (n == 1). |
---|
254 | |
---|
255 | // reset point to zero... |
---|
256 | result = Point<DATA_TYPE, COLS>(); |
---|
257 | |
---|
258 | for (unsigned iRow = 0; iRow < ROWS; ++iRow) |
---|
259 | for (unsigned iCol = 0; iCol < COLS; ++iCol) |
---|
260 | result[iRow] += matrix( iRow, iCol ) * point[iCol]; |
---|
261 | |
---|
262 | return result; |
---|
263 | } |
---|
264 | |
---|
265 | /** matrix * point. |
---|
266 | * multiplication of [m x k] matrix by a [k x 1] matrix (also known as a Point...). |
---|
267 | * @param matrix the transform matrix |
---|
268 | * @param point the original point |
---|
269 | * @return the point transformed by the matrix |
---|
270 | * @post This results in a full matrix xform of the point. |
---|
271 | * @post returns a point same size as the matrix rows... (p[r][1] = m[r][k] * p[k][1]) |
---|
272 | */ |
---|
273 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
274 | inline Point<DATA_TYPE, COLS> operator*( const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Point<DATA_TYPE, COLS>& point ) |
---|
275 | { |
---|
276 | Point<DATA_TYPE, COLS> temporary; |
---|
277 | return xform( temporary, matrix, point ); |
---|
278 | } |
---|
279 | |
---|
280 | |
---|
281 | |
---|
282 | |
---|
283 | /** transform a partially specified point by a matrix, assumes last elt of point is 1. |
---|
284 | * Transforms a point with a matrix, uses multiplication of [m x k] matrix by a [k-1 x 1] matrix (also known as a Point [with w == 1 for points by definition] ). |
---|
285 | * @param result the point to write the result in |
---|
286 | * @param matrix the transform matrix |
---|
287 | * @param point the original point |
---|
288 | * @post the [k-1 x 1] point you pass in is treated as [point, 1.0] |
---|
289 | * @post This results in a full matrix xform of the point. |
---|
290 | * @todo we need a PointOps.h operator*=(scalar) function |
---|
291 | */ |
---|
292 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS, unsigned PNT_SIZE> |
---|
293 | inline Point<DATA_TYPE, PNT_SIZE>& xform( Point<DATA_TYPE, PNT_SIZE>& result, const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Point<DATA_TYPE, PNT_SIZE>& point ) |
---|
294 | { |
---|
295 | //gmtlSERT( PNT_SIZE == COLS - 1 && "The precondition of this method is that the vector size must be one less than the number of columns in the matrix. eg. if Mat<n,k>, then Vec<k-1>." ); |
---|
296 | GMTL_STATIC_ASSERT( PNT_SIZE == COLS-1, Point_not_of_size_mat_col_minus_1_as_required_for_xform); |
---|
297 | |
---|
298 | // copy the point to the correct size. |
---|
299 | Point<DATA_TYPE, PNT_SIZE+1> temp_point, temp_result; |
---|
300 | for (unsigned x = 0; x < PNT_SIZE; ++x) |
---|
301 | temp_point[x] = point[x]; |
---|
302 | temp_point[PNT_SIZE] = (DATA_TYPE)1.0; // by definition of a point, set the last unspecified elt to 1.0 |
---|
303 | |
---|
304 | // transform it. |
---|
305 | xform<DATA_TYPE, ROWS, COLS>( temp_result, matrix, temp_point ); |
---|
306 | |
---|
307 | // convert result back to pnt<DATA_TYPE, PNT_SIZE> |
---|
308 | // some matrices will make the W param large even if this is a true vector, |
---|
309 | // we'll need to redistribute it to the other elts if W param is non-zero |
---|
310 | if (Math::isEqual( temp_result[PNT_SIZE], (DATA_TYPE)0, (DATA_TYPE)0.0001 ) == false) |
---|
311 | { |
---|
312 | DATA_TYPE w_coord_div = DATA_TYPE( 1.0 ) / temp_result[PNT_SIZE]; |
---|
313 | for (unsigned x = 0; x < PNT_SIZE; ++x) |
---|
314 | result[x] = temp_result[x] * w_coord_div; |
---|
315 | } |
---|
316 | else |
---|
317 | { |
---|
318 | for (unsigned x = 0; x < PNT_SIZE; ++x) |
---|
319 | result[x] = temp_result[x]; |
---|
320 | } |
---|
321 | |
---|
322 | return result; |
---|
323 | } |
---|
324 | |
---|
325 | /** matrix * partially specified point. |
---|
326 | * multiplication of [m x k] matrix by a [k-1 x 1] matrix (also known as a Point [with w == 1 for points by definition] ). |
---|
327 | * @param matrix the transform matrix |
---|
328 | * @param point the original point |
---|
329 | * @return the point transformed by the matrix |
---|
330 | * @post the [k-1 x 1] vector you pass in is treated as a [point, 1.0] |
---|
331 | * @post This results in a full matrix xform of the point. |
---|
332 | */ |
---|
333 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS, unsigned COLS_MINUS_ONE> |
---|
334 | inline Point<DATA_TYPE, COLS_MINUS_ONE> operator*( const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Point<DATA_TYPE, COLS_MINUS_ONE>& point ) |
---|
335 | { |
---|
336 | Point<DATA_TYPE, COLS_MINUS_ONE> temporary; |
---|
337 | return xform( temporary, matrix, point ); |
---|
338 | } |
---|
339 | |
---|
340 | /** point * a matrix |
---|
341 | * multiplication of [m x k] matrix by a [k x 1] matrix (also known as a Point [with w == 1 for points by definition] ). |
---|
342 | * @param matrix the transform matrix |
---|
343 | * @param point the original point |
---|
344 | * @return the point transformed by the matrix |
---|
345 | * @post This results in a full matrix xform of the point. |
---|
346 | */ |
---|
347 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
348 | inline Point<DATA_TYPE, COLS> operator*( const Point<DATA_TYPE, COLS>& point, const Matrix<DATA_TYPE, ROWS, COLS>& matrix ) |
---|
349 | { |
---|
350 | Point<DATA_TYPE, COLS> temporary; |
---|
351 | return xform( temporary, matrix, point ); |
---|
352 | } |
---|
353 | |
---|
354 | |
---|
355 | /** point *= a matrix |
---|
356 | * multiplication of [m x k] matrix by a [k x 1] matrix (also known as a Point [with w == 1 for points by definition] ). |
---|
357 | * @param matrix the transform matrix |
---|
358 | * @param point the original point |
---|
359 | * @return the point transformed by the matrix |
---|
360 | * @post This results in a full matrix xform of the point. |
---|
361 | */ |
---|
362 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
363 | inline Point<DATA_TYPE, COLS> operator*=(Point<DATA_TYPE, COLS>& point, const Matrix<DATA_TYPE, ROWS, COLS>& matrix) |
---|
364 | { |
---|
365 | Point<DATA_TYPE, COLS> temporary = point; |
---|
366 | return xform( point, matrix, temporary); |
---|
367 | } |
---|
368 | |
---|
369 | /** partial point *= a matrix |
---|
370 | * multiplication of [m x k] matrix by a [k-1 x 1] matrix (also known as a Point [with w == 1 for points by definition] ). |
---|
371 | * @param matrix the transform matrix |
---|
372 | * @param point the original point |
---|
373 | * @return the point transformed by the matrix |
---|
374 | * @post the [k-1 x 1] vector you pass in is treated as a [point, 1.0] |
---|
375 | * @post This results in a full matrix xform of the point. |
---|
376 | */ |
---|
377 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS, unsigned COLS_MINUS_ONE> |
---|
378 | inline Point<DATA_TYPE, COLS_MINUS_ONE>& operator*=( Point<DATA_TYPE, COLS_MINUS_ONE>& point, const Matrix<DATA_TYPE, ROWS, COLS>& matrix ) |
---|
379 | { |
---|
380 | Point<DATA_TYPE, COLS_MINUS_ONE> temporary = point; |
---|
381 | return xform( point, matrix, temporary); |
---|
382 | } |
---|
383 | |
---|
384 | |
---|
385 | /** @} */ |
---|
386 | |
---|
387 | /** transform ray by a matrix. |
---|
388 | * multiplication of [m x k] matrix by two [k x 1] matrices (also known as a ray...). |
---|
389 | * @param result the ray to write the result in |
---|
390 | * @param matrix the transform matrix |
---|
391 | * @param ray the original ray |
---|
392 | * @post This results in a full matrix xform of the ray. |
---|
393 | * @post returns a ray same size as the matrix rows... (p[r][1] = m[r][k] * p[k][1]) |
---|
394 | */ |
---|
395 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
396 | inline Ray<DATA_TYPE>& xform( Ray<DATA_TYPE>& result, const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Ray<DATA_TYPE>& ray ) |
---|
397 | { |
---|
398 | gmtl::Point<DATA_TYPE, 3> pos; |
---|
399 | gmtl::Vec<DATA_TYPE, 3> dir; |
---|
400 | result.setOrigin( xform( pos, matrix, ray.getOrigin() ) ); |
---|
401 | result.setDir( xform( dir, matrix, ray.getDir() ) ); |
---|
402 | return result; |
---|
403 | } |
---|
404 | |
---|
405 | /** ray * a matrix |
---|
406 | * multiplication of [m x k] matrix by a ray. |
---|
407 | * @param matrix the transform matrix |
---|
408 | * @param ray the original ray |
---|
409 | * @return the ray transformed by the matrix |
---|
410 | * @post This results in a full matrix xform of the ray. |
---|
411 | */ |
---|
412 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
413 | inline Ray<DATA_TYPE> operator*( const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const Ray<DATA_TYPE>& ray ) |
---|
414 | { |
---|
415 | Ray<DATA_TYPE> temporary; |
---|
416 | return xform( temporary, matrix, ray ); |
---|
417 | } |
---|
418 | |
---|
419 | |
---|
420 | /** ray *= a matrix |
---|
421 | * multiplication of [m x k] matrix by a ray. |
---|
422 | * @param matrix the transform matrix |
---|
423 | * @param ray the original ray |
---|
424 | * @return the ray transformed by the matrix |
---|
425 | * @post This results in a full matrix xform of the ray. |
---|
426 | */ |
---|
427 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
428 | inline Ray<DATA_TYPE>& operator*=( Ray<DATA_TYPE>& ray, const Matrix<DATA_TYPE, ROWS, COLS>& matrix ) |
---|
429 | { |
---|
430 | Ray<DATA_TYPE> temporary = ray; |
---|
431 | return xform( ray, matrix, temporary); |
---|
432 | } |
---|
433 | |
---|
434 | /** transform seg by a matrix. |
---|
435 | * multiplication of [m x k] matrix by two [k x 1] matrices (also known as a seg...). |
---|
436 | * @param result the seg to write the result in |
---|
437 | * @param matrix the transform matrix |
---|
438 | * @param seg the original seg |
---|
439 | * @post This results in a full matrix xform of the seg. |
---|
440 | * @post returns a seg same size as the matrix rows... (p[r][1] = m[r][k] * p[k][1]) |
---|
441 | */ |
---|
442 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
443 | inline LineSeg<DATA_TYPE>& xform( LineSeg<DATA_TYPE>& result, const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const LineSeg<DATA_TYPE>& seg ) |
---|
444 | { |
---|
445 | gmtl::Point<DATA_TYPE, 3> pos; |
---|
446 | gmtl::Vec<DATA_TYPE, 3> dir; |
---|
447 | result.setOrigin( xform( pos, matrix, seg.getOrigin() ) ); |
---|
448 | result.setDir( xform( dir, matrix, seg.getDir() ) ); |
---|
449 | return result; |
---|
450 | } |
---|
451 | |
---|
452 | /** seg * a matrix |
---|
453 | * multiplication of [m x k] matrix by a seg. |
---|
454 | * @param matrix the transform matrix |
---|
455 | * @param seg the original ray |
---|
456 | * @return the seg transformed by the matrix |
---|
457 | * @post This results in a full matrix xform of the seg. |
---|
458 | */ |
---|
459 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
460 | inline LineSeg<DATA_TYPE> operator*( const Matrix<DATA_TYPE, ROWS, COLS>& matrix, const LineSeg<DATA_TYPE>& seg ) |
---|
461 | { |
---|
462 | LineSeg<DATA_TYPE> temporary; |
---|
463 | return xform( temporary, matrix, seg ); |
---|
464 | } |
---|
465 | |
---|
466 | |
---|
467 | /** seg *= a matrix |
---|
468 | * multiplication of [m x k] matrix by a seg. |
---|
469 | * @param matrix the transform matrix |
---|
470 | * @param seg the original point |
---|
471 | * @return the point transformed by the matrix |
---|
472 | * @post This results in a full matrix xform of the point. |
---|
473 | */ |
---|
474 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
475 | inline LineSeg<DATA_TYPE>& operator*=( LineSeg<DATA_TYPE>& seg, const Matrix<DATA_TYPE, ROWS, COLS>& matrix ) |
---|
476 | { |
---|
477 | LineSeg<DATA_TYPE> temporary = seg; |
---|
478 | return xform( seg, matrix, temporary); |
---|
479 | } |
---|
480 | |
---|
481 | |
---|
482 | |
---|
483 | |
---|
484 | // old xform stuff... |
---|
485 | /* |
---|
486 | // XXX: Assuming that there is no projective portion to the matrix or homogeneous coord |
---|
487 | // NOTE: It is a vec, so we don't deal with the translation |
---|
488 | Vec3 operator*(const Matrix& mat, const Vec3& vec) |
---|
489 | { |
---|
490 | |
---|
491 | Vec3 ret_vec; |
---|
492 | for(int iRow=0;iRow<3;iRow++) |
---|
493 | { |
---|
494 | ret_vec[iRow] = (vec[0]* (mat[0][iRow])) |
---|
495 | + (vec[1]* (mat[1][iRow])) |
---|
496 | + (vec[2]* (mat[2][iRow])); |
---|
497 | } |
---|
498 | return ret_vec; |
---|
499 | } |
---|
500 | |
---|
501 | // XXX: Assuming no projective or homogeneous coord to the mat |
---|
502 | Point3 operator*(const Matrix& mat, const Point3& point) |
---|
503 | { |
---|
504 | Point3 ret_pt; |
---|
505 | for(int iRow=0;iRow<3;iRow++) |
---|
506 | { |
---|
507 | ret_pt[iRow] = (point[0]* (mat[0][iRow])) |
---|
508 | + (point[1]* (mat[1][iRow])) |
---|
509 | + (point[2]* (mat[2][iRow])) |
---|
510 | + (mat[3][iRow]); |
---|
511 | } |
---|
512 | return ret_pt; |
---|
513 | } |
---|
514 | |
---|
515 | // Xform an OOB by a matrix |
---|
516 | // NOTE: This will NOT work if the matrix has shear or scale |
---|
517 | OOBox operator*(const Matrix& mat, const OOBox& box) |
---|
518 | { |
---|
519 | OOBox ret_box; |
---|
520 | |
---|
521 | ret_box.center() = mat * box.center(); |
---|
522 | |
---|
523 | ret_box.axis(0) = mat * ret_box.axis(0); |
---|
524 | ret_box.axis(1) = mat * ret_box.axis(1); |
---|
525 | ret_box.axis(2) = mat * ret_box.axis(2); |
---|
526 | |
---|
527 | ret_box.halfLen(0) = box.halfLen(0); |
---|
528 | ret_box.halfLen(1) = box.halfLen(1); |
---|
529 | ret_box.halfLen(2) = box.halfLen(2); |
---|
530 | |
---|
531 | return ret_box; |
---|
532 | } |
---|
533 | */ |
---|
534 | |
---|
535 | }; |
---|
536 | |
---|
537 | #endif |
---|