1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: VecOps.h,v |
---|
10 | * Date modified: 2005/12/03 20:54:25 |
---|
11 | * Version: 1.34 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | #ifndef _GMTL_VEC_OPS_H_ |
---|
36 | #define _GMTL_VEC_OPS_H_ |
---|
37 | |
---|
38 | #include <gmtl/Defines.h> |
---|
39 | #include <gmtl/Math.h> |
---|
40 | #include <gmtl/Vec.h> |
---|
41 | #ifndef GMTL_NO_METAPROG |
---|
42 | #include <gmtl/VecOpsMeta.h> |
---|
43 | #include <gmtl/VecExprMeta.h> |
---|
44 | #endif |
---|
45 | |
---|
46 | namespace gmtl |
---|
47 | { |
---|
48 | |
---|
49 | /** @ingroup Ops |
---|
50 | * @name Vector/Point Operations |
---|
51 | * @{ |
---|
52 | */ |
---|
53 | |
---|
54 | // --- Basic VEC types operations -- // |
---|
55 | |
---|
56 | /** |
---|
57 | * Negates v1. The result = -v1. |
---|
58 | * |
---|
59 | * @param v1 the vector. |
---|
60 | * |
---|
61 | * @return the result of negating v1. |
---|
62 | */ |
---|
63 | #ifdef GMTL_NO_METAPROG |
---|
64 | template<typename DATA_TYPE, unsigned SIZE> |
---|
65 | Vec<DATA_TYPE, SIZE> operator- (const VecBase<DATA_TYPE, SIZE>& v1) |
---|
66 | { |
---|
67 | Vec<DATA_TYPE, SIZE> ret_val; |
---|
68 | for ( unsigned i=0; i < SIZE; ++i ) |
---|
69 | { |
---|
70 | ret_val[i] = -v1[i]; |
---|
71 | } |
---|
72 | return ret_val; |
---|
73 | } |
---|
74 | #else |
---|
75 | template<typename T, unsigned SIZE, typename R1> |
---|
76 | inline VecBase<T,SIZE, meta::VecUnaryExpr<VecBase<T,SIZE,R1>, meta::VecNegUnary> > |
---|
77 | operator-(const VecBase<T,SIZE,R1>& v1) |
---|
78 | { |
---|
79 | return VecBase<T,SIZE, |
---|
80 | meta::VecUnaryExpr<VecBase<T,SIZE,R1>, meta::VecNegUnary> > |
---|
81 | ( meta::VecUnaryExpr<VecBase<T,SIZE,R1>, meta::VecNegUnary>(v1) ); |
---|
82 | } |
---|
83 | #endif |
---|
84 | |
---|
85 | /** |
---|
86 | * Adds v2 to v1 and stores the result in v1. This is equivalent to the |
---|
87 | * expression v1 = v1 + v2. |
---|
88 | * |
---|
89 | * @param v1 the first vector |
---|
90 | * @param v2 the second vector |
---|
91 | * |
---|
92 | * @return v1 after v2 has been added to it |
---|
93 | */ |
---|
94 | #ifdef GMTL_NO_METAPROG |
---|
95 | template<class DATA_TYPE, unsigned SIZE> |
---|
96 | VecBase<DATA_TYPE, SIZE>& operator +=(VecBase<DATA_TYPE, SIZE>& v1, |
---|
97 | const VecBase<DATA_TYPE, SIZE>& v2) |
---|
98 | #else |
---|
99 | template<class DATA_TYPE, unsigned SIZE, typename REP2> |
---|
100 | VecBase<DATA_TYPE, SIZE>& operator +=(VecBase<DATA_TYPE, SIZE>& v1, |
---|
101 | const VecBase<DATA_TYPE, SIZE, REP2>& v2) |
---|
102 | #endif |
---|
103 | { |
---|
104 | for(unsigned i=0;i<SIZE;++i) |
---|
105 | { |
---|
106 | v1[i] += v2[i]; |
---|
107 | } |
---|
108 | |
---|
109 | return v1; |
---|
110 | } |
---|
111 | |
---|
112 | /** |
---|
113 | * Adds v2 to v1 and returns the result. Thus result = v1 + v2. |
---|
114 | * |
---|
115 | * @param v1 the first vector |
---|
116 | * @param v2 the second vector |
---|
117 | * |
---|
118 | * @return the result of adding v2 to v1 |
---|
119 | */ |
---|
120 | #ifdef GMTL_NO_METAPROG |
---|
121 | template<class DATA_TYPE, unsigned SIZE> |
---|
122 | VecBase<DATA_TYPE, SIZE> operator +(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
123 | const VecBase<DATA_TYPE, SIZE>& v2) |
---|
124 | { |
---|
125 | VecBase<DATA_TYPE, SIZE> ret_val(v1); |
---|
126 | ret_val += v2; |
---|
127 | return ret_val; |
---|
128 | } |
---|
129 | #else |
---|
130 | template<typename T, unsigned SIZE, typename R1, typename R2> |
---|
131 | inline VecBase<T,SIZE, meta::VecBinaryExpr<VecBase<T,SIZE,R1>, VecBase<T,SIZE,R2>, meta::VecPlusBinary> > |
---|
132 | operator+(const VecBase<T,SIZE,R1>& v1, const VecBase<T,SIZE,R2>& v2) |
---|
133 | { |
---|
134 | return VecBase<T,SIZE, |
---|
135 | meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
136 | VecBase<T,SIZE,R2>, |
---|
137 | meta::VecPlusBinary> >( meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
138 | VecBase<T,SIZE,R2>, |
---|
139 | meta::VecPlusBinary>(v1,v2) ); |
---|
140 | } |
---|
141 | #endif |
---|
142 | |
---|
143 | /** |
---|
144 | * Subtracts v2 from v1 and stores the result in v1. This is equivalent to the |
---|
145 | * expression v1 = v1 - v2. |
---|
146 | * |
---|
147 | * @param v1 the first vector |
---|
148 | * @param v2 the second vector |
---|
149 | * |
---|
150 | * @return v1 after v2 has been subtracted from it |
---|
151 | */ |
---|
152 | #ifdef GMTL_NO_METAPROG |
---|
153 | template<class DATA_TYPE, unsigned SIZE> |
---|
154 | VecBase<DATA_TYPE, SIZE>& operator -=(VecBase<DATA_TYPE, SIZE>& v1, |
---|
155 | const VecBase<DATA_TYPE, SIZE>& v2) |
---|
156 | #else |
---|
157 | template<class DATA_TYPE, unsigned SIZE, typename REP2> |
---|
158 | VecBase<DATA_TYPE, SIZE>& operator -=(VecBase<DATA_TYPE, SIZE>& v1, |
---|
159 | const VecBase<DATA_TYPE, SIZE, REP2>& v2) |
---|
160 | #endif |
---|
161 | { |
---|
162 | for(unsigned i=0;i<SIZE;++i) |
---|
163 | { |
---|
164 | v1[i] -= v2[i]; |
---|
165 | } |
---|
166 | |
---|
167 | return v1; |
---|
168 | } |
---|
169 | |
---|
170 | /** |
---|
171 | * Subtracts v2 from v1 and returns the result. Thus result = v1 - v2. |
---|
172 | * |
---|
173 | * @param v1 the first vector |
---|
174 | * @param v2 the second vector |
---|
175 | * |
---|
176 | * @return the result of subtracting v2 from v1 |
---|
177 | */ |
---|
178 | #ifdef GMTL_NO_METAPROG |
---|
179 | template < class DATA_TYPE, unsigned SIZE> |
---|
180 | Vec<DATA_TYPE, SIZE> operator -(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
181 | const VecBase<DATA_TYPE, SIZE>& v2) |
---|
182 | { |
---|
183 | Vec<DATA_TYPE, SIZE> ret_val(v1); |
---|
184 | ret_val -= v2; |
---|
185 | return ret_val; |
---|
186 | } |
---|
187 | #else |
---|
188 | template<typename T, unsigned SIZE, typename R1, typename R2> |
---|
189 | inline VecBase<T,SIZE, meta::VecBinaryExpr<VecBase<T,SIZE,R1>, VecBase<T,SIZE,R2>, meta::VecMinusBinary> > |
---|
190 | operator-(const VecBase<T,SIZE,R1>& v1, const VecBase<T,SIZE,R2>& v2) |
---|
191 | { |
---|
192 | return VecBase<T,SIZE, |
---|
193 | meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
194 | VecBase<T,SIZE,R2>, |
---|
195 | meta::VecMinusBinary> >( meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
196 | VecBase<T,SIZE,R2>, |
---|
197 | meta::VecMinusBinary>(v1,v2) ); |
---|
198 | } |
---|
199 | #endif |
---|
200 | |
---|
201 | /** |
---|
202 | * Multiplies v1 by a scalar value and stores the result in v1. This is |
---|
203 | * equivalent to the expression v1 = v1 * scalar. |
---|
204 | * |
---|
205 | * @param v1 the vector to scale |
---|
206 | * @param scalar the amount by which to scale v1 |
---|
207 | * |
---|
208 | * @return v1 after it has been mutiplied by scalar |
---|
209 | */ |
---|
210 | template<class DATA_TYPE, unsigned SIZE, class SCALAR_TYPE> |
---|
211 | VecBase<DATA_TYPE, SIZE>& operator *=(VecBase<DATA_TYPE, SIZE>& v1, |
---|
212 | const SCALAR_TYPE& scalar) |
---|
213 | { |
---|
214 | for(unsigned i=0;i<SIZE;++i) |
---|
215 | { |
---|
216 | v1[i] *= (DATA_TYPE)scalar; |
---|
217 | } |
---|
218 | |
---|
219 | return v1; |
---|
220 | } |
---|
221 | |
---|
222 | /** |
---|
223 | * Multiplies v1 by a scalar value and returns the result. Thus result = v1 * |
---|
224 | * scalar. |
---|
225 | * |
---|
226 | * @param v1 the vector to scale |
---|
227 | * @param scalar the amount by which to scale v1 |
---|
228 | * |
---|
229 | * @return the result of multiplying v1 by scalar |
---|
230 | */ |
---|
231 | #ifdef GMTL_NO_METAPROG |
---|
232 | template<class DATA_TYPE, unsigned SIZE, class SCALAR_TYPE> |
---|
233 | VecBase<DATA_TYPE, SIZE> operator *(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
234 | const SCALAR_TYPE& scalar) |
---|
235 | { |
---|
236 | VecBase<DATA_TYPE, SIZE> ret_val(v1); |
---|
237 | ret_val *= scalar; |
---|
238 | return ret_val; |
---|
239 | |
---|
240 | //return VecBase<DATA_TYPE, SIZE>(v1) *= scalar; |
---|
241 | } |
---|
242 | #else |
---|
243 | template<typename T, unsigned SIZE, typename R1> |
---|
244 | inline VecBase<T,SIZE, meta::VecBinaryExpr<VecBase<T,SIZE,R1>, VecBase<T,SIZE, meta::ScalarArg<T> >, meta::VecMultBinary> > |
---|
245 | operator*(const VecBase<T,SIZE,R1>& v1, const T scalar) |
---|
246 | { |
---|
247 | return VecBase<T,SIZE, |
---|
248 | meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
249 | VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
250 | meta::VecMultBinary> >( |
---|
251 | meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
252 | VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
253 | meta::VecMultBinary>(v1, |
---|
254 | meta::ScalarArg<T>(scalar)) ); |
---|
255 | } |
---|
256 | |
---|
257 | template<typename T, unsigned SIZE, typename R1> |
---|
258 | inline VecBase<T,SIZE, meta::VecBinaryExpr< VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
259 | VecBase<T,SIZE,R1>, |
---|
260 | meta::VecMultBinary> > |
---|
261 | operator*(const T scalar, const VecBase<T,SIZE,R1>& v1) |
---|
262 | { |
---|
263 | return VecBase<T,SIZE, |
---|
264 | meta::VecBinaryExpr<VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
265 | VecBase<T,SIZE,R1>, |
---|
266 | meta::VecMultBinary> >( |
---|
267 | meta::VecBinaryExpr<VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
268 | VecBase<T,SIZE,R1>, |
---|
269 | meta::VecMultBinary>(meta::ScalarArg<T>(scalar), v1 ) ); |
---|
270 | } |
---|
271 | #endif |
---|
272 | |
---|
273 | /** |
---|
274 | * Multiplies v1 by a scalar value and returns the result. Thus result = scalar |
---|
275 | * * v1. This is equivalent to result = v1 * scalar. |
---|
276 | * |
---|
277 | * @param scalar the amount by which to scale v1 |
---|
278 | * @param v1 the vector to scale |
---|
279 | * |
---|
280 | * @return the result of multiplying v1 by scalar |
---|
281 | */ |
---|
282 | #ifdef GMTL_NO_METAPROG |
---|
283 | template<class DATA_TYPE, unsigned SIZE, class SCALAR_TYPE> |
---|
284 | VecBase<DATA_TYPE, SIZE> operator *(const SCALAR_TYPE& scalar, |
---|
285 | const VecBase<DATA_TYPE, SIZE>& v1) |
---|
286 | { |
---|
287 | VecBase<DATA_TYPE, SIZE> ret_val(v1); |
---|
288 | ret_val *= scalar; |
---|
289 | return ret_val; |
---|
290 | |
---|
291 | //return VecBase<DATA_TYPE, SIZE>(v1) *= scalar; |
---|
292 | } |
---|
293 | #endif |
---|
294 | |
---|
295 | /** |
---|
296 | * Divides v1 by a scalar value and stores the result in v1. This is |
---|
297 | * equivalent to the expression v1 = v1 / scalar. |
---|
298 | * |
---|
299 | * @param v1 the vector to scale |
---|
300 | * @param scalar the amount by which to scale v1 |
---|
301 | * |
---|
302 | * @return v1 after it has been divided by scalar |
---|
303 | */ |
---|
304 | template<class DATA_TYPE, unsigned SIZE, class SCALAR_TYPE> |
---|
305 | VecBase<DATA_TYPE, SIZE>& operator /=(VecBase<DATA_TYPE, SIZE>& v1, |
---|
306 | const SCALAR_TYPE& scalar) |
---|
307 | { |
---|
308 | for(unsigned i=0;i<SIZE;++i) |
---|
309 | { |
---|
310 | v1[i] /= scalar; |
---|
311 | } |
---|
312 | |
---|
313 | return v1; |
---|
314 | } |
---|
315 | |
---|
316 | /** |
---|
317 | * Divides v1 by a scalar value and returns the result. Thus result = v1 / |
---|
318 | * scalar. |
---|
319 | * |
---|
320 | * @param v1 the vector to scale |
---|
321 | * @param scalar the amount by which to scale v1 |
---|
322 | * |
---|
323 | * @return the result of dividing v1 by scalar |
---|
324 | */ |
---|
325 | #ifdef GMTL_NO_METAPROG |
---|
326 | template<class DATA_TYPE, unsigned SIZE, class SCALAR_TYPE> |
---|
327 | VecBase<DATA_TYPE, SIZE> operator /(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
328 | const SCALAR_TYPE& scalar) |
---|
329 | { |
---|
330 | VecBase<DATA_TYPE, SIZE> ret_val(v1); |
---|
331 | ret_val /= scalar; |
---|
332 | return ret_val; |
---|
333 | // return VecBase<DATA_TYPE, SIZE>(v1)( /= scalar; |
---|
334 | } |
---|
335 | #else |
---|
336 | template<typename T, unsigned SIZE, typename R1> |
---|
337 | inline VecBase<T,SIZE, meta::VecBinaryExpr<VecBase<T,SIZE,R1>, VecBase<T,SIZE, meta::ScalarArg<T> >, meta::VecDivBinary> > |
---|
338 | operator/(const VecBase<T,SIZE,R1>& v1, const T scalar) |
---|
339 | { |
---|
340 | return VecBase<T,SIZE, |
---|
341 | meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
342 | VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
343 | meta::VecDivBinary> >( |
---|
344 | meta::VecBinaryExpr<VecBase<T,SIZE,R1>, |
---|
345 | VecBase<T,SIZE, meta::ScalarArg<T> >, |
---|
346 | meta::VecDivBinary>(v1, |
---|
347 | meta::ScalarArg<T>(scalar)) ); |
---|
348 | } |
---|
349 | #endif |
---|
350 | |
---|
351 | /** @} */ |
---|
352 | |
---|
353 | |
---|
354 | /** @ingroup Ops |
---|
355 | * @name Vector Operations |
---|
356 | * @{ |
---|
357 | */ |
---|
358 | |
---|
359 | /** |
---|
360 | * Computes dot product of v1 and v2 and returns the result. |
---|
361 | * |
---|
362 | * @param v1 the first vector |
---|
363 | * @param v2 the second vector |
---|
364 | * |
---|
365 | * @return the dotproduct of v1 and v2 |
---|
366 | */ |
---|
367 | #ifdef GMTL_NO_METAPROG |
---|
368 | template<class DATA_TYPE, unsigned SIZE> |
---|
369 | DATA_TYPE dot(const VecBase<DATA_TYPE, SIZE>& v1, const VecBase<DATA_TYPE, SIZE>& v2) |
---|
370 | { |
---|
371 | DATA_TYPE ret_val(0); |
---|
372 | for(unsigned i=0;i<SIZE;++i) |
---|
373 | { |
---|
374 | ret_val += (v1[i] * v2[i]); |
---|
375 | } |
---|
376 | return ret_val; |
---|
377 | } |
---|
378 | #else |
---|
379 | template<class DATA_TYPE, unsigned SIZE, typename REP1, typename REP2> |
---|
380 | DATA_TYPE dot(const VecBase<DATA_TYPE, SIZE, REP1>& v1, const VecBase<DATA_TYPE, SIZE, REP2>& v2) |
---|
381 | { |
---|
382 | return gmtl::meta::DotVecUnrolled<SIZE-1, |
---|
383 | VecBase<DATA_TYPE,SIZE,REP1>, |
---|
384 | VecBase<DATA_TYPE,SIZE,REP2> >::func(v1,v2); |
---|
385 | } |
---|
386 | #endif |
---|
387 | |
---|
388 | /** |
---|
389 | * Computes the length of the given vector. |
---|
390 | * |
---|
391 | * @param v1 the vector with which to compute the length |
---|
392 | * |
---|
393 | * @return the length of v1 |
---|
394 | */ |
---|
395 | template<class DATA_TYPE, unsigned SIZE> |
---|
396 | DATA_TYPE length(const Vec<DATA_TYPE, SIZE>& v1) |
---|
397 | { |
---|
398 | DATA_TYPE ret_val = lengthSquared(v1); |
---|
399 | if (ret_val == DATA_TYPE(0.0f)) |
---|
400 | return DATA_TYPE(0.0f); |
---|
401 | else |
---|
402 | return Math::sqrt(ret_val); |
---|
403 | } |
---|
404 | |
---|
405 | /** |
---|
406 | * Computes the square of the length of the given vector. This can be used in |
---|
407 | * many calculations instead of length to increase speed by saving you an |
---|
408 | * expensive sqrt call. |
---|
409 | * |
---|
410 | * @param v1 the vector with which to compute the squared length |
---|
411 | * |
---|
412 | * @return the square of the length of v1 |
---|
413 | */ |
---|
414 | template<class DATA_TYPE, unsigned SIZE> |
---|
415 | DATA_TYPE lengthSquared(const Vec<DATA_TYPE, SIZE>& v1) |
---|
416 | { |
---|
417 | #ifdef GMTL_NO_METAPROG |
---|
418 | DATA_TYPE ret_val(0); |
---|
419 | for(unsigned i=0;i<SIZE;++i) |
---|
420 | { |
---|
421 | ret_val += (v1[i] * v1[i]); |
---|
422 | } |
---|
423 | |
---|
424 | return ret_val; |
---|
425 | #else |
---|
426 | return gmtl::meta::LenSqrVecUnrolled<SIZE-1,Vec<DATA_TYPE,SIZE> >::func(v1); |
---|
427 | #endif |
---|
428 | } |
---|
429 | |
---|
430 | /** |
---|
431 | * Normalizes the given vector in place causing it to be of unit length. If the |
---|
432 | * vector is already of length 1.0, nothing is done. For convenience, the |
---|
433 | * original length of the vector is returned. |
---|
434 | * |
---|
435 | * @post length(v1) == 1.0 unless length(v1) is originally 0.0, in which case it is unchanged |
---|
436 | * |
---|
437 | * @param v1 the vector to normalize |
---|
438 | * |
---|
439 | * @return the length of v1 before it was normalized |
---|
440 | */ |
---|
441 | template<class DATA_TYPE, unsigned SIZE> |
---|
442 | DATA_TYPE normalize(Vec<DATA_TYPE, SIZE>& v1) |
---|
443 | { |
---|
444 | DATA_TYPE len = length(v1); |
---|
445 | |
---|
446 | if(len != 0.0f) |
---|
447 | { |
---|
448 | for(unsigned i=0;i<SIZE;++i) |
---|
449 | { |
---|
450 | v1[i] /= len; |
---|
451 | } |
---|
452 | } |
---|
453 | |
---|
454 | return len; |
---|
455 | } |
---|
456 | |
---|
457 | /** |
---|
458 | * Determines if the given vector is normalized within the given tolerance. The |
---|
459 | * vector is normalized if its lengthSquared is 1. |
---|
460 | * |
---|
461 | * @param v1 the vector to test |
---|
462 | * @param eps the epsilon tolerance |
---|
463 | * |
---|
464 | * @return true if the vector is normalized, false otherwise |
---|
465 | */ |
---|
466 | template< class DATA_TYPE, unsigned SIZE > |
---|
467 | bool isNormalized( const Vec<DATA_TYPE, SIZE>& v1, |
---|
468 | const DATA_TYPE eps = (DATA_TYPE) 0.0001f ) |
---|
469 | { |
---|
470 | return Math::isEqual( lengthSquared( v1 ), DATA_TYPE(1.0), eps ); |
---|
471 | } |
---|
472 | |
---|
473 | /** |
---|
474 | * Computes the cross product between v1 and v2 and stores the result in result. |
---|
475 | * The result is also returned by reference. Use this when you want to reuse an |
---|
476 | * existing Vec to store the result. Note that this only applies to |
---|
477 | * 3-dimensional vectors. |
---|
478 | * |
---|
479 | * @pre v1 and v2 are 3-D vectors |
---|
480 | * @post result = v1 x v2 |
---|
481 | * |
---|
482 | * @param result filled with the result of the cross product between v1 and v2 |
---|
483 | * @param v1 the first vector |
---|
484 | * @param v2 the second vector |
---|
485 | * |
---|
486 | * @return a reference to result for convenience |
---|
487 | */ |
---|
488 | template<class DATA_TYPE> |
---|
489 | Vec<DATA_TYPE,3>& cross( Vec<DATA_TYPE,3>& result, const Vec<DATA_TYPE, 3>& v1, |
---|
490 | const Vec<DATA_TYPE, 3>& v2 ) |
---|
491 | { |
---|
492 | result.set( (v1[Yelt]*v2[Zelt]) - (v1[Zelt]*v2[Yelt]), |
---|
493 | (v1[Zelt]*v2[Xelt]) - (v1[Xelt]*v2[Zelt]), |
---|
494 | (v1[Xelt]*v2[Yelt]) - (v1[Yelt]*v2[Xelt]) ); |
---|
495 | return result; |
---|
496 | } |
---|
497 | |
---|
498 | /** |
---|
499 | * Reflect a vector about a normal. |
---|
500 | * |
---|
501 | * This method reflects the given vector around the normal vector given. It is similar to if the normal vector was |
---|
502 | * for a plane that you wanted to reflect about. v going into the plane, n normal to the plane, and r coming back out |
---|
503 | * of the plane. (see below) |
---|
504 | * |
---|
505 | * | v |
---|
506 | * | / |
---|
507 | * |/ |
---|
508 | * |------> n |
---|
509 | * |\ |
---|
510 | * | \ |
---|
511 | * | r |
---|
512 | * |
---|
513 | * @param result the vector to store the result i |
---|
514 | * @param vec the original vector that we want to reflect |
---|
515 | * @param normal the normal vector |
---|
516 | * |
---|
517 | * @post result contains the reflected vector |
---|
518 | */ |
---|
519 | template<class DATA_TYPE, unsigned SIZE> |
---|
520 | VecBase<DATA_TYPE, SIZE>& reflect( VecBase<DATA_TYPE, SIZE>& result, const |
---|
521 | VecBase<DATA_TYPE, SIZE>& vec, |
---|
522 | const Vec<DATA_TYPE, SIZE>& normal ) |
---|
523 | { |
---|
524 | result = vec - (DATA_TYPE( 2.0 ) * (dot( (Vec<DATA_TYPE, SIZE>)vec, normal ) * normal)); |
---|
525 | return result; |
---|
526 | } |
---|
527 | |
---|
528 | /** @} */ |
---|
529 | |
---|
530 | /** @ingroup Interp |
---|
531 | * @name Vector Interpolation |
---|
532 | * @{ |
---|
533 | */ |
---|
534 | |
---|
535 | /** |
---|
536 | * Linearly interpolates between to vectors. |
---|
537 | * |
---|
538 | * @pre lerpVal is a value between 0 and 1 that interpolates between from and to. |
---|
539 | * @post undefined if lerpVal < 0 or lerpVal > 1 |
---|
540 | * |
---|
541 | * @param result the result of the linear interpolation |
---|
542 | * @param lerpVal the value to interpolate between from and to |
---|
543 | * @param from the vector at lerpVal 0 |
---|
544 | * @param to the vector at lerpVal 1 |
---|
545 | * |
---|
546 | * @return a reference to result for convenience |
---|
547 | */ |
---|
548 | template <typename DATA_TYPE, unsigned SIZE> |
---|
549 | VecBase<DATA_TYPE, SIZE>& lerp( VecBase<DATA_TYPE, SIZE>& result, |
---|
550 | const DATA_TYPE& lerpVal, |
---|
551 | const VecBase<DATA_TYPE, SIZE>& from, |
---|
552 | const VecBase<DATA_TYPE, SIZE>& to ) |
---|
553 | { |
---|
554 | /// @todo metaprogramming... |
---|
555 | for (unsigned int x = 0; x < SIZE; ++x) |
---|
556 | { |
---|
557 | Math::lerp( result[x], lerpVal, from[x], to[x] ); |
---|
558 | } |
---|
559 | return result; |
---|
560 | } |
---|
561 | /** @} */ |
---|
562 | |
---|
563 | /** @ingroup Compare |
---|
564 | * @name Vector Comparitors |
---|
565 | * @{ |
---|
566 | */ |
---|
567 | |
---|
568 | |
---|
569 | // --- VEC comparisons -- // |
---|
570 | |
---|
571 | /** |
---|
572 | * Compares v1 and v2 to see if they are exactly the same. |
---|
573 | * |
---|
574 | * @param v1 the first vector |
---|
575 | * @param v2 the second vector |
---|
576 | * |
---|
577 | * @return true if v1 equals v2; false if they differ |
---|
578 | */ |
---|
579 | template<class DATA_TYPE, unsigned SIZE> |
---|
580 | inline bool operator==(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
581 | const VecBase<DATA_TYPE, SIZE>& v2) |
---|
582 | { |
---|
583 | #ifdef GMTL_NO_METAPROG |
---|
584 | for(unsigned i=0;i<SIZE;++i) |
---|
585 | { |
---|
586 | if(v1[i] != v2[i]) |
---|
587 | { |
---|
588 | return false; |
---|
589 | } |
---|
590 | } |
---|
591 | |
---|
592 | return true; |
---|
593 | #else |
---|
594 | return gmtl::meta::EqualVecUnrolled<SIZE-1,Vec<DATA_TYPE,SIZE> >::func(v1,v2); |
---|
595 | #endif |
---|
596 | /* Would like this |
---|
597 | return(vec[0] == _v[0] && |
---|
598 | vec[1] == _v[1] && |
---|
599 | vec[2] == _v[2]); |
---|
600 | */ |
---|
601 | } |
---|
602 | |
---|
603 | /** |
---|
604 | * Compares v1 and v2 to see if they are NOT exactly the same with zero |
---|
605 | * tolerance. |
---|
606 | * |
---|
607 | * @param v1 the first vector |
---|
608 | * @param v2 the second vector |
---|
609 | * |
---|
610 | * @return true if v1 does not equal v2; false if they are equal |
---|
611 | */ |
---|
612 | template<class DATA_TYPE, unsigned SIZE> |
---|
613 | inline bool operator!=(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
614 | const VecBase<DATA_TYPE, SIZE>& v2) |
---|
615 | { |
---|
616 | return(! (v1 == v2)); |
---|
617 | } |
---|
618 | |
---|
619 | /** |
---|
620 | * Compares v1 and v2 to see if they are the same within the given epsilon |
---|
621 | * tolerance. |
---|
622 | * |
---|
623 | * @pre eps must be >= 0 |
---|
624 | * |
---|
625 | * @param v1 the first vector |
---|
626 | * @param v2 the second vector |
---|
627 | * @param eps the epsilon tolerance value |
---|
628 | * |
---|
629 | * @return true if v1 equals v2 within the tolerance; false if they differ |
---|
630 | */ |
---|
631 | template<class DATA_TYPE, unsigned SIZE> |
---|
632 | inline bool isEqual(const VecBase<DATA_TYPE, SIZE>& v1, |
---|
633 | const VecBase<DATA_TYPE, SIZE>& v2, const DATA_TYPE eps) |
---|
634 | { |
---|
635 | gmtlASSERT(eps >= 0); |
---|
636 | |
---|
637 | for(unsigned i=0;i<SIZE;++i) |
---|
638 | { |
---|
639 | if ( gmtl::Math::abs(v1[i] - v2[i]) > eps ) |
---|
640 | { |
---|
641 | return false; |
---|
642 | } |
---|
643 | } |
---|
644 | return true; |
---|
645 | } |
---|
646 | |
---|
647 | /** @} */ |
---|
648 | |
---|
649 | } |
---|
650 | |
---|
651 | #endif |
---|