source: projectionDesigner/trunk/projdesigner/include/gmtl/Tri.h @ 133

Last change on this file since 133 was 4, checked in by Torben Dannhauer, 15 years ago
File size: 7.2 KB
RevLine 
[4]1/************************************************************** ggt-head beg
2 *
3 * GGT: Generic Graphics Toolkit
4 *
5 * Original Authors:
6 *   Allen Bierbaum
7 *
8 * -----------------------------------------------------------------
9 * File:          Tri.h,v
10 * Date modified: 2004/11/12 01:28:44
11 * Version:       1.13
12 * -----------------------------------------------------------------
13 *
14 *********************************************************** ggt-head end */
15/*************************************************************** ggt-cpr beg
16*
17* GGT: The Generic Graphics Toolkit
18* Copyright (C) 2001,2002 Allen Bierbaum
19*
20* This library is free software; you can redistribute it and/or
21* modify it under the terms of the GNU Lesser General Public
22* License as published by the Free Software Foundation; either
23* version 2.1 of the License, or (at your option) any later version.
24*
25* This library is distributed in the hope that it will be useful,
26* but WITHOUT ANY WARRANTY; without even the implied warranty of
27* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28* Lesser General Public License for more details.
29*
30* You should have received a copy of the GNU Lesser General Public
31* License along with this library; if not, write to the Free Software
32* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33*
34 ************************************************************ ggt-cpr end */
35#ifndef _GMTL_TRI_H_
36#define _GMTL_TRI_H_
37
38#include <gmtl/Point.h>
39#include <gmtl/Vec.h>
40#include <gmtl/VecOps.h>
41 
42namespace gmtl
43{
44/**
45 * This class defines a triangle as a set of 3 points order in CCW fashion.
46 *
47 * Triangle points are tri(s,t) = b+s*e0+t*e1 where 0 <= s <= 1,
48 * 0 <= t <= 1, and 0 <= s+t <= 1.
49 * @ingroup Types
50 */
51template< class DATA_TYPE >
52class  Tri
53{
54public:
55   /**
56    * Constructs a new triangle with all vertices at the origin.
57    */
58   Tri() {}
59
60   /**
61    * Constructs a new triangle with the given points. The points must be passed
62    * in in CCW order.
63    *
64    * @param p1   vertex0
65    * @param p2   vertex1
66    * @param p3   vertex2
67    *
68    * @pre p1, p2, p3 must be in CCW order
69    */
70   Tri( const Point<DATA_TYPE, 3>& p1, const Point<DATA_TYPE, 3>& p2,
71        const Point<DATA_TYPE, 3>& p3)
72   {
73      mVerts[0] = p1;
74      mVerts[1] = p2;
75      mVerts[2] = p3;
76   }
77
78   /**
79    * Constructs a duplicate of the given triangle.
80    *
81    * @param tri     the triangle to copy
82    */
83   Tri( const Tri<DATA_TYPE>& tri )
84   {
85      mVerts[0] = tri[0];
86      mVerts[1] = tri[1];
87      mVerts[2] = tri[2];
88   }
89
90   /**
91    * Gets the nth vertex in the triangle.
92    *
93    * @param idx     the index to the vertex in the triangle
94    * @pre 0 <= idx <= 2
95    *
96    * @return  the nth vertex as a point
97    */
98   //@{
99   Point<DATA_TYPE, 3>& operator[]( const unsigned idx )
100   {
101      gmtlASSERT( idx <= 2 );
102      return mVerts[idx];
103   }
104   const Point<DATA_TYPE, 3>& operator[]( const unsigned idx ) const
105   {
106      gmtlASSERT( idx <= 2 );
107      return mVerts[idx];
108   }
109   //@}
110
111   /**
112    * Gets the nth edge of the triangle where edge0 corresponds to the vector
113    * from vertex 0 to 1, edge1 corresponds to the vector from vertex 1 to 2 and
114    * edge2 corresponsds to the vector from vertex 2 to vertex 0.
115    *
116    * @param   idx     the ordered edge index
117    * @pre 0 <= idx <= 2
118    *
119    * @return  a vector from vertex idx to vertex (idx+1)mod size
120    */
121   Vec<DATA_TYPE, 3> edge( int idx ) const
122   {
123      gmtlASSERT( (0 <= idx) && (idx <= 2) );
124      int idx2 = ( idx == 2 ) ? 0 : idx + 1;
125      return (mVerts[idx2] - mVerts[idx]);
126   }
127
128   /** get edge vec from two verts
129    *
130    * @param   idx,idy     the ordered vertex indicies
131    * @pre 0 <= id <= 2
132    *
133    * @return  a vector from vertex idx to vertex idy
134    */
135   Vec<DATA_TYPE, 3> edge( int idx, int idy ) const
136   {
137      gmtlASSERT( (0 <= idx) && (idx <= 2) );
138      gmtlASSERT( (0 <= idy) && (idy <= 2) );
139      return (mVerts[idy] - mVerts[idx]);
140   }
141
142 
143
144   /**
145    * Set the triangle with the given points. The points must be passed
146    * in in CCW order.
147    *
148    * @param p1   vertex0
149    * @param p2   vertex1
150    * @param p3   vertex2
151    *
152    * @pre p1, p2, p3 must be in CCW order
153    */
154   void set( const Point<DATA_TYPE, 3>& p1, const Point<DATA_TYPE, 3>& p2,
155           const Point<DATA_TYPE, 3>& p3 )
156   {
157      mVerts[0] = p1;
158      mVerts[1] = p2;
159      mVerts[2] = p3;
160   }
161
162private:
163   /**
164    * The vertices of the triangle.
165    */
166   Point<DATA_TYPE, 3> mVerts[3];
167};
168
169// convenience typedefs
170typedef Tri<float> Trif;
171typedef Tri<double> Trid;
172typedef Tri<int> Trii;
173}
174
175/*
176// Finds the point on the seg nearest to pt.
177// on the perimeter of the triangle.
178// Returns the nearest point in nearPt
179inline
180void sgTri::findNearestEdgePt(const sgVec3& pt, sgVec3& nearPt) const
181{
182    //      find all the closest pts on the segs that make the tri
183    //      return the closest one
184
185    sgSeg   seg1;   seg1.makePts(_v1, _v2);
186    sgSeg   seg2;   seg2.makePts(_v2, _v3);
187    sgSeg   seg3;   seg3.makePts(_v3, _v1);
188
189    sgVec3  pt1;    seg1.findNearestPt(pt, pt1);
190    sgVec3  pt2;    seg2.findNearestPt(pt, pt2);
191    sgVec3  pt3;    seg3.findNearestPt(pt, pt3);
192
193    float dist1 = SG_SQUARE(pt1[0]-pt[0]) + SG_SQUARE(pt1[1]-pt[1]) + SG_SQUARE(pt1[2]-pt[2]);
194    float dist2 = SG_SQUARE(pt2[0]-pt[0]) + SG_SQUARE(pt2[1]-pt[1]) + SG_SQUARE(pt2[2]-pt[2]);
195    float dist3 = SG_SQUARE(pt3[0]-pt[0]) + SG_SQUARE(pt3[1]-pt[1]) + SG_SQUARE(pt3[2]-pt[2]);
196
197    if((dist1 < dist2) && (dist1 < dist3))      // dist1 is min
198        nearPt = pt1;
199    else if(dist2 < dist3)                      // dist2 is min
200        nearPt = pt2;
201    else
202        nearPt = pt3;                           // dist3 is min
203}
204
205
206
207        // Returns wether the pt is in the triangle
208inline
209int sgTri::ptIn(const sgVec3& pt) const
210{
211                // Graphic Gems I: Page 392
212        int i0, i1, i2;     // Axis indices
213        float u0, u1, u2, v0, v1, v2, alpha, beta;
214        i0 = 0;
215       
216    sgVec3  triNormal = (_v2-_v1).cross((_v3-_v1));
217    //sgPlane triPlane;
218    //triPlane.makePts(_v1, _v2, _v3);
219
220        // Find max index
221    // NOTE: note the fabs.  I added because of bug in GG code with negative normals
222        for(int index=0;index<3;index++)
223        if (fabs(triNormal.vec[index]) > fabs(triNormal.vec[i0]))
224                i0 = index;
225       
226        if(i0 == 0)
227                { i1 = 1; i2 = 2; }
228        else if (i0 == 1)
229                { i1 = 2; i2 = 0; }
230        else
231                { i1 =0; i2 = 1; }
232       
233        u0 = pt[i1] - _v1[i1];
234        v0 = pt[i2] - _v1[i2];
235        u1 = _v2[i1] - _v1[i1];
236        u2 = _v3[i1] - _v1[i1];
237        v1 = _v2[i2] - _v1[i2];
238        v2 = _v3[i2] - _v1[i2];
239        if(u1 == 0)
240        {
241                beta = (u0/u2);
242                if((beta >= 0) && (beta<= 1))
243                        alpha = (v0 - (beta*v2))/v1;
244        }
245        else
246        {
247                beta = ((v0*u1) - (u0*v1))/((v2*u1) - (u2*v1));
248                if((beta >= 0) && (beta<= 1))
249                        alpha = (u0 - (beta*u2))/u1;
250        }
251       
252        return ((alpha >= 0) && (beta >= 0) && ((alpha+beta) <= 1));
253}
254
255
256
257// Finds the point on the seg nearest to pt.
258// Returns the nearest point in nearPt
259void sgTri::findNearestPt(const sgVec3& pt, sgVec3& nearPt) const
260{
261        // find nearest pt on plaane.
262        //      if it is in the tri, return it.
263        // Otherwise return the pt closest on the edge of the tri
264
265    sgPlane triPlane;
266    triPlane.makePts(_v1, _v2, _v3);
267    triPlane.findNearestPt(pt, nearPt);
268
269    if(!ptIn(nearPt))
270        findNearestEdgePt(pt, nearPt);
271}
272*/
273
274#endif
275
Note: See TracBrowser for help on using the repository browser.