1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: QuatOps.h,v |
---|
10 | * Date modified: 2004/05/25 16:36:28 |
---|
11 | * Version: 1.26 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | #ifndef _GMTL_QUAT_OPS_H_ |
---|
36 | #define _GMTL_QUAT_OPS_H_ |
---|
37 | |
---|
38 | #include <gmtl/Math.h> |
---|
39 | #include <gmtl/Quat.h> |
---|
40 | |
---|
41 | namespace gmtl |
---|
42 | { |
---|
43 | /** @ingroup Ops Quat |
---|
44 | * @name Quat Operations |
---|
45 | * @{ |
---|
46 | */ |
---|
47 | |
---|
48 | /** product of two quaternions (quaternion product) |
---|
49 | * multiplication of quats is much like multiplication of typical complex numbers. |
---|
50 | * @post q1q2 = (s1 + v1)(s2 + v2) |
---|
51 | * @post result = q1 * q2 (where q2 would be applied first to any xformed geometry) |
---|
52 | * @see Quat |
---|
53 | */ |
---|
54 | template <typename DATA_TYPE> |
---|
55 | Quat<DATA_TYPE>& mult( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
56 | { |
---|
57 | // Here is the easy to understand equation: (grassman product) |
---|
58 | // scalar_component = q1.s * q2.s - dot(q1.v, q2.v) |
---|
59 | // vector_component = q2.v * q1.s + q1.v * q2.s + cross(q1.v, q2.v) |
---|
60 | |
---|
61 | // Here is another version (euclidean product, just FYI)... |
---|
62 | // scalar_component = q1.s * q2.s + dot(q1.v, q2.v) |
---|
63 | // vector_component = q2.v * q1.s - q1.v * q2.s - cross(q1.v, q2.v) |
---|
64 | |
---|
65 | // Here it is, using vector algebra (grassman product) |
---|
66 | /* |
---|
67 | const float& w1( q1[Welt] ), w2( q2[Welt] ); |
---|
68 | Vec3 v1( q1[Xelt], q1[Yelt], q1[Zelt] ), v2( q2[Xelt], q2[Yelt], q2[Zelt] ); |
---|
69 | |
---|
70 | float w = w1 * w2 - v1.dot( v2 ); |
---|
71 | Vec3 v = (w1 * v2) + (w2 * v1) + v1.cross( v2 ); |
---|
72 | |
---|
73 | vec[Welt] = w; |
---|
74 | vec[Xelt] = v[0]; |
---|
75 | vec[Yelt] = v[1]; |
---|
76 | vec[Zelt] = v[2]; |
---|
77 | */ |
---|
78 | |
---|
79 | // Here is the same, only expanded... (grassman product) |
---|
80 | Quat<DATA_TYPE> temporary; // avoid aliasing problems... |
---|
81 | temporary[Xelt] = q1[Welt]*q2[Xelt] + q1[Xelt]*q2[Welt] + q1[Yelt]*q2[Zelt] - q1[Zelt]*q2[Yelt]; |
---|
82 | temporary[Yelt] = q1[Welt]*q2[Yelt] + q1[Yelt]*q2[Welt] + q1[Zelt]*q2[Xelt] - q1[Xelt]*q2[Zelt]; |
---|
83 | temporary[Zelt] = q1[Welt]*q2[Zelt] + q1[Zelt]*q2[Welt] + q1[Xelt]*q2[Yelt] - q1[Yelt]*q2[Xelt]; |
---|
84 | temporary[Welt] = q1[Welt]*q2[Welt] - q1[Xelt]*q2[Xelt] - q1[Yelt]*q2[Yelt] - q1[Zelt]*q2[Zelt]; |
---|
85 | |
---|
86 | // use a temporary, in case q1 or q2 is the same as self. |
---|
87 | result[Xelt] = temporary[Xelt]; |
---|
88 | result[Yelt] = temporary[Yelt]; |
---|
89 | result[Zelt] = temporary[Zelt]; |
---|
90 | result[Welt] = temporary[Welt]; |
---|
91 | |
---|
92 | // don't normalize, because it might not be rotation arithmetic we're doing |
---|
93 | // (only rotation quats have unit length) |
---|
94 | return result; |
---|
95 | } |
---|
96 | |
---|
97 | /** product of two quaternions (quaternion product) |
---|
98 | * Does quaternion multiplication. |
---|
99 | * @post temp' = q1 * q2 (where q2 would be applied first to any xformed geometry) |
---|
100 | * @see Quat |
---|
101 | * @todo metaprogramming on quat operator*() |
---|
102 | */ |
---|
103 | template <typename DATA_TYPE> |
---|
104 | Quat<DATA_TYPE> operator*( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
105 | { |
---|
106 | // (grassman product - see mult() for discussion) |
---|
107 | // don't normalize, because it might not be rotation arithmetic we're doing |
---|
108 | // (only rotation quats have unit length) |
---|
109 | return Quat<DATA_TYPE>( q1[Welt]*q2[Xelt] + q1[Xelt]*q2[Welt] + q1[Yelt]*q2[Zelt] - q1[Zelt]*q2[Yelt], |
---|
110 | q1[Welt]*q2[Yelt] + q1[Yelt]*q2[Welt] + q1[Zelt]*q2[Xelt] - q1[Xelt]*q2[Zelt], |
---|
111 | q1[Welt]*q2[Zelt] + q1[Zelt]*q2[Welt] + q1[Xelt]*q2[Yelt] - q1[Yelt]*q2[Xelt], |
---|
112 | q1[Welt]*q2[Welt] - q1[Xelt]*q2[Xelt] - q1[Yelt]*q2[Yelt] - q1[Zelt]*q2[Zelt] ); |
---|
113 | } |
---|
114 | |
---|
115 | /** quaternion postmult |
---|
116 | * @post result' = result * q2 (where q2 is applied first to any xformed geometry) |
---|
117 | * @see Quat |
---|
118 | */ |
---|
119 | template <typename DATA_TYPE> |
---|
120 | Quat<DATA_TYPE>& operator*=( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q2 ) |
---|
121 | { |
---|
122 | return mult( result, result, q2 ); |
---|
123 | } |
---|
124 | |
---|
125 | /** Vector negation - negate each element in the quaternion vector. |
---|
126 | * the negative of a rotation quaternion is geometrically equivelent |
---|
127 | * to the original. there exist 2 quats for every possible rotation. |
---|
128 | * @return returns the negation of the given quat. |
---|
129 | */ |
---|
130 | template <typename DATA_TYPE> |
---|
131 | Quat<DATA_TYPE>& negate( Quat<DATA_TYPE>& result ) |
---|
132 | { |
---|
133 | result[0] = -result[0]; |
---|
134 | result[1] = -result[1]; |
---|
135 | result[2] = -result[2]; |
---|
136 | result[3] = -result[3]; |
---|
137 | return result; |
---|
138 | } |
---|
139 | |
---|
140 | /** Vector negation - (operator-) return a temporary that is the negative of the given quat. |
---|
141 | * the negative of a rotation quaternion is geometrically equivelent |
---|
142 | * to the original. there exist 2 quats for every possible rotation. |
---|
143 | * @return returns the negation of the given quat |
---|
144 | */ |
---|
145 | template <typename DATA_TYPE> |
---|
146 | Quat<DATA_TYPE> operator-( const Quat<DATA_TYPE>& quat ) |
---|
147 | { |
---|
148 | return Quat<DATA_TYPE>( -quat[0], -quat[1], -quat[2], -quat[3] ); |
---|
149 | } |
---|
150 | |
---|
151 | /** vector scalar multiplication |
---|
152 | * @post result' = [qx*s, qy*s, qz*s, qw*s] |
---|
153 | * @see Quat |
---|
154 | */ |
---|
155 | template <typename DATA_TYPE> |
---|
156 | Quat<DATA_TYPE>& mult( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q, DATA_TYPE s ) |
---|
157 | { |
---|
158 | result[0] = q[0] * s; |
---|
159 | result[1] = q[1] * s; |
---|
160 | result[2] = q[2] * s; |
---|
161 | result[3] = q[3] * s; |
---|
162 | return result; |
---|
163 | } |
---|
164 | |
---|
165 | /** vector scalar multiplication |
---|
166 | * @post result' = [qx*s, qy*s, qz*s, qw*s] |
---|
167 | * @see Quat |
---|
168 | */ |
---|
169 | template <typename DATA_TYPE> |
---|
170 | Quat<DATA_TYPE> operator*( const Quat<DATA_TYPE>& q, DATA_TYPE s ) |
---|
171 | { |
---|
172 | Quat<DATA_TYPE> temporary; |
---|
173 | return mult( temporary, q, s ); |
---|
174 | } |
---|
175 | |
---|
176 | /** vector scalar multiplication |
---|
177 | * @post result' = [resultx*s, resulty*s, resultz*s, resultw*s] |
---|
178 | * @see Quat |
---|
179 | */ |
---|
180 | template <typename DATA_TYPE> |
---|
181 | Quat<DATA_TYPE>& operator*=( Quat<DATA_TYPE>& q, DATA_TYPE s ) |
---|
182 | { |
---|
183 | return mult( q, q, s ); |
---|
184 | } |
---|
185 | |
---|
186 | /** quotient of two quaternions |
---|
187 | * @post result = q1 * (1/q2) (where 1/q2 is applied first to any xform'd geometry) |
---|
188 | * @see Quat |
---|
189 | */ |
---|
190 | template <typename DATA_TYPE> |
---|
191 | Quat<DATA_TYPE>& div( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q1, Quat<DATA_TYPE> q2 ) |
---|
192 | { |
---|
193 | // multiply q1 by the multiplicative inverse of the quaternion |
---|
194 | return mult( result, q1, invert( q2 ) ); |
---|
195 | } |
---|
196 | |
---|
197 | /** quotient of two quaternions |
---|
198 | * @post result = q1 * (1/q2) (where 1/q2 is applied first to any xform'd geometry) |
---|
199 | * @see Quat |
---|
200 | */ |
---|
201 | template <typename DATA_TYPE> |
---|
202 | Quat<DATA_TYPE> operator/( const Quat<DATA_TYPE>& q1, Quat<DATA_TYPE> q2 ) |
---|
203 | { |
---|
204 | return q1 * invert( q2 ); |
---|
205 | } |
---|
206 | |
---|
207 | /** quotient of two quaternions |
---|
208 | * @post result = result * (1/q2) (where 1/q2 is applied first to any xform'd geometry) |
---|
209 | * @see Quat |
---|
210 | */ |
---|
211 | template <typename DATA_TYPE> |
---|
212 | Quat<DATA_TYPE>& operator/=( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q2 ) |
---|
213 | { |
---|
214 | return div( result, result, q2 ); |
---|
215 | } |
---|
216 | |
---|
217 | /** quaternion vector scale |
---|
218 | * @post result = q / s |
---|
219 | * @see Quat |
---|
220 | */ |
---|
221 | template <typename DATA_TYPE> |
---|
222 | Quat<DATA_TYPE>& div( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q, DATA_TYPE s ) |
---|
223 | { |
---|
224 | result[0] = q[0] / s; |
---|
225 | result[1] = q[1] / s; |
---|
226 | result[2] = q[2] / s; |
---|
227 | result[3] = q[3] / s; |
---|
228 | return result; |
---|
229 | } |
---|
230 | |
---|
231 | /** vector scalar division |
---|
232 | * @post result' = [qx/s, qy/s, qz/s, qw/s] |
---|
233 | * @see Quat |
---|
234 | */ |
---|
235 | template <typename DATA_TYPE> |
---|
236 | Quat<DATA_TYPE> operator/( const Quat<DATA_TYPE>& q, DATA_TYPE s ) |
---|
237 | { |
---|
238 | Quat<DATA_TYPE> temporary; |
---|
239 | return div( temporary, q, s ); |
---|
240 | } |
---|
241 | |
---|
242 | /** vector scalar division |
---|
243 | * @post result' = [resultx/s, resulty/s, resultz/s, resultw/s] |
---|
244 | * @see Quat |
---|
245 | */ |
---|
246 | template <typename DATA_TYPE> |
---|
247 | Quat<DATA_TYPE>& operator/=( const Quat<DATA_TYPE>& q, DATA_TYPE s ) |
---|
248 | { |
---|
249 | return div( q, q, s ); |
---|
250 | } |
---|
251 | |
---|
252 | /** vector addition |
---|
253 | * @see Quat |
---|
254 | */ |
---|
255 | template <typename DATA_TYPE> |
---|
256 | Quat<DATA_TYPE>& add( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
257 | { |
---|
258 | result[0] = q1[0] + q2[0]; |
---|
259 | result[1] = q1[1] + q2[1]; |
---|
260 | result[2] = q1[2] + q2[2]; |
---|
261 | result[3] = q1[3] + q2[3]; |
---|
262 | return result; |
---|
263 | } |
---|
264 | |
---|
265 | /** vector addition |
---|
266 | * @post result' = [qx+s, qy+s, qz+s, qw+s] |
---|
267 | * @see Quat |
---|
268 | */ |
---|
269 | template <typename DATA_TYPE> |
---|
270 | Quat<DATA_TYPE> operator+( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
271 | { |
---|
272 | Quat<DATA_TYPE> temporary; |
---|
273 | return add( temporary, q1, q2 ); |
---|
274 | } |
---|
275 | |
---|
276 | /** vector addition |
---|
277 | * @post result' = [resultx+s, resulty+s, resultz+s, resultw+s] |
---|
278 | * @see Quat |
---|
279 | */ |
---|
280 | template <typename DATA_TYPE> |
---|
281 | Quat<DATA_TYPE>& operator+=( Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
282 | { |
---|
283 | return add( q1, q1, q2 ); |
---|
284 | } |
---|
285 | |
---|
286 | /** vector subtraction |
---|
287 | * @see Quat |
---|
288 | */ |
---|
289 | template <typename DATA_TYPE> |
---|
290 | Quat<DATA_TYPE>& sub( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
291 | { |
---|
292 | result[0] = q1[0] - q2[0]; |
---|
293 | result[1] = q1[1] - q2[1]; |
---|
294 | result[2] = q1[2] - q2[2]; |
---|
295 | result[3] = q1[3] - q2[3]; |
---|
296 | return result; |
---|
297 | } |
---|
298 | |
---|
299 | /** vector subtraction |
---|
300 | * @post result' = [qx-s, qy-s, qz-s, qw-s] |
---|
301 | * @see Quat |
---|
302 | */ |
---|
303 | template <typename DATA_TYPE> |
---|
304 | Quat<DATA_TYPE> operator-( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
305 | { |
---|
306 | Quat<DATA_TYPE> temporary; |
---|
307 | return sub( temporary, q1, q2 ); |
---|
308 | } |
---|
309 | |
---|
310 | /** vector subtraction |
---|
311 | * @post result' = [resultx-s, resulty-s, resultz-s, resultw-s] |
---|
312 | * @see Quat |
---|
313 | */ |
---|
314 | template <typename DATA_TYPE> |
---|
315 | Quat<DATA_TYPE>& operator-=( Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
316 | { |
---|
317 | return sub( q1, q1, q2 ); |
---|
318 | } |
---|
319 | |
---|
320 | /** vector dot product between two quaternions. |
---|
321 | * get the lengthSquared between two quat vectors... |
---|
322 | * @post N(q) = x1*x2 + y1*y2 + z1*z2 + w1*w2 |
---|
323 | * @return dot product of q1 and q2 |
---|
324 | * @see Quat |
---|
325 | */ |
---|
326 | template <typename DATA_TYPE> |
---|
327 | DATA_TYPE dot( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
328 | { |
---|
329 | return DATA_TYPE( (q1[0] * q2[0]) + |
---|
330 | (q1[1] * q2[1]) + |
---|
331 | (q1[2] * q2[2]) + |
---|
332 | (q1[3] * q2[3]) ); |
---|
333 | } |
---|
334 | |
---|
335 | /** quaternion "norm" (also known as vector length squared) |
---|
336 | * using this can be faster than using length for some operations... |
---|
337 | * @post returns the vector length squared |
---|
338 | * @post N(q) = x^2 + y^2 + z^2 + w^2 |
---|
339 | * @post result = x*x + y*y + z*z + w*w |
---|
340 | * @see Quat |
---|
341 | */ |
---|
342 | template <typename DATA_TYPE> |
---|
343 | DATA_TYPE lengthSquared( const Quat<DATA_TYPE>& q ) |
---|
344 | { |
---|
345 | return dot( q, q ); |
---|
346 | } |
---|
347 | |
---|
348 | /** quaternion "absolute" (also known as vector length or magnitude) |
---|
349 | * using this can be faster than using length for some operations... |
---|
350 | * @post returns the magnitude of the 4D vector. |
---|
351 | * @post result = sqrt( lengthSquared( q ) ) |
---|
352 | * @see Quat |
---|
353 | */ |
---|
354 | template <typename DATA_TYPE> |
---|
355 | DATA_TYPE length( const Quat<DATA_TYPE>& q ) |
---|
356 | { |
---|
357 | return Math::sqrt( lengthSquared( q ) ); |
---|
358 | } |
---|
359 | |
---|
360 | /** set self to the normalized quaternion of self. |
---|
361 | * @pre magnitude should be > 0, otherwise no calculation is done. |
---|
362 | * @post result' = normalize( result ), where normalize makes length( result ) == 1 |
---|
363 | * @see Quat |
---|
364 | */ |
---|
365 | template <typename DATA_TYPE> |
---|
366 | Quat<DATA_TYPE>& normalize( Quat<DATA_TYPE>& result ) |
---|
367 | { |
---|
368 | DATA_TYPE l = length( result ); |
---|
369 | |
---|
370 | // return if no magnitude (already as normalized as possible) |
---|
371 | if (l < (DATA_TYPE)0.0001) |
---|
372 | return result; |
---|
373 | |
---|
374 | DATA_TYPE l_inv = ((DATA_TYPE)1.0) / l; |
---|
375 | result[Xelt] *= l_inv; |
---|
376 | result[Yelt] *= l_inv; |
---|
377 | result[Zelt] *= l_inv; |
---|
378 | result[Welt] *= l_inv; |
---|
379 | |
---|
380 | return result; |
---|
381 | } |
---|
382 | |
---|
383 | /** |
---|
384 | * Determines if the given quaternion is normalized within the given tolerance. The |
---|
385 | * quaternion is normalized if its lengthSquared is 1. |
---|
386 | * |
---|
387 | * @param q1 the quaternion to test |
---|
388 | * @param eps the epsilon tolerance |
---|
389 | * |
---|
390 | * @return true if the quaternion is normalized, false otherwise |
---|
391 | */ |
---|
392 | template< typename DATA_TYPE > |
---|
393 | bool isNormalized( const Quat<DATA_TYPE>& q1, const DATA_TYPE eps = 0.0001f ) |
---|
394 | { |
---|
395 | return Math::isEqual( lengthSquared( q1 ), DATA_TYPE(1), eps ); |
---|
396 | } |
---|
397 | |
---|
398 | /** quaternion complex conjugate. |
---|
399 | * @post set result to the complex conjugate of result. |
---|
400 | * @post q* = [s,-v] |
---|
401 | * @post result'[x,y,z,w] == result[-x,-y,-z,w] |
---|
402 | * @see Quat |
---|
403 | */ |
---|
404 | template <typename DATA_TYPE> |
---|
405 | Quat<DATA_TYPE>& conj( Quat<DATA_TYPE>& result ) |
---|
406 | { |
---|
407 | result[Xelt] = -result[Xelt]; |
---|
408 | result[Yelt] = -result[Yelt]; |
---|
409 | result[Zelt] = -result[Zelt]; |
---|
410 | return result; |
---|
411 | } |
---|
412 | |
---|
413 | /** quaternion multiplicative inverse. |
---|
414 | * @post self becomes the multiplicative inverse of self |
---|
415 | * @post 1/q = q* / N(q) |
---|
416 | * @see Quat |
---|
417 | */ |
---|
418 | template <typename DATA_TYPE> |
---|
419 | Quat<DATA_TYPE>& invert( Quat<DATA_TYPE>& result ) |
---|
420 | { |
---|
421 | // from game programming gems p198 |
---|
422 | // do result = conj( q ) / norm( q ) |
---|
423 | conj( result ); |
---|
424 | |
---|
425 | // return if norm() is near 0 (divide by 0 would result in NaN) |
---|
426 | DATA_TYPE l = lengthSquared( result ); |
---|
427 | if (l < (DATA_TYPE)0.0001) |
---|
428 | return result; |
---|
429 | |
---|
430 | DATA_TYPE l_inv = ((DATA_TYPE)1.0) / l; |
---|
431 | result[Xelt] *= l_inv; |
---|
432 | result[Yelt] *= l_inv; |
---|
433 | result[Zelt] *= l_inv; |
---|
434 | result[Welt] *= l_inv; |
---|
435 | return result; |
---|
436 | } |
---|
437 | |
---|
438 | /** complex exponentiation. |
---|
439 | * @pre safe to pass self as argument |
---|
440 | * @post sets self to the exponentiation of quat |
---|
441 | * @see Quat |
---|
442 | */ |
---|
443 | template <typename DATA_TYPE> |
---|
444 | Quat<DATA_TYPE>& exp( Quat<DATA_TYPE>& result ) |
---|
445 | { |
---|
446 | DATA_TYPE len1, len2; |
---|
447 | |
---|
448 | len1 = Math::sqrt( result[Xelt] * result[Xelt] + |
---|
449 | result[Yelt] * result[Yelt] + |
---|
450 | result[Zelt] * result[Zelt] ); |
---|
451 | if (len1 > (DATA_TYPE)0.0) |
---|
452 | len2 = Math::sin( len1 ) / len1; |
---|
453 | else |
---|
454 | len2 = (DATA_TYPE)1.0; |
---|
455 | |
---|
456 | result[Xelt] = result[Xelt] * len2; |
---|
457 | result[Yelt] = result[Yelt] * len2; |
---|
458 | result[Zelt] = result[Zelt] * len2; |
---|
459 | result[Welt] = Math::cos( len1 ); |
---|
460 | |
---|
461 | return result; |
---|
462 | } |
---|
463 | |
---|
464 | /** complex logarithm |
---|
465 | * @post sets self to the log of quat |
---|
466 | * @see Quat |
---|
467 | */ |
---|
468 | template <typename DATA_TYPE> |
---|
469 | Quat<DATA_TYPE>& log( Quat<DATA_TYPE>& result ) |
---|
470 | { |
---|
471 | DATA_TYPE length; |
---|
472 | |
---|
473 | length = Math::sqrt( result[Xelt] * result[Xelt] + |
---|
474 | result[Yelt] * result[Yelt] + |
---|
475 | result[Zelt] * result[Zelt] ); |
---|
476 | |
---|
477 | // avoid divide by 0 |
---|
478 | if (Math::isEqual( result[Welt], (DATA_TYPE)0.0, (DATA_TYPE)0.00001 ) == false) |
---|
479 | length = Math::aTan( length / result[Welt] ); |
---|
480 | else |
---|
481 | length = Math::PI_OVER_2; |
---|
482 | |
---|
483 | result[Welt] = (DATA_TYPE)0.0; |
---|
484 | result[Xelt] = result[Xelt] * length; |
---|
485 | result[Yelt] = result[Yelt] * length; |
---|
486 | result[Zelt] = result[Zelt] * length; |
---|
487 | return result; |
---|
488 | } |
---|
489 | |
---|
490 | /** WARNING: not implemented (do not use) */ |
---|
491 | template <typename DATA_TYPE> |
---|
492 | void squad( Quat<DATA_TYPE>& result, DATA_TYPE t, const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2, const Quat<DATA_TYPE>& a, const Quat<DATA_TYPE>& b ) |
---|
493 | { |
---|
494 | gmtlASSERT( false ); |
---|
495 | } |
---|
496 | |
---|
497 | /** WARNING: not implemented (do not use) */ |
---|
498 | template <typename DATA_TYPE> |
---|
499 | void meanTangent( Quat<DATA_TYPE>& result, const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2, const Quat<DATA_TYPE>& q3 ) |
---|
500 | { |
---|
501 | gmtlASSERT( false ); |
---|
502 | } |
---|
503 | |
---|
504 | |
---|
505 | |
---|
506 | /** @} */ |
---|
507 | |
---|
508 | /** @ingroup Interp Quat |
---|
509 | * @name Quaternion Interpolation |
---|
510 | * @{ |
---|
511 | */ |
---|
512 | |
---|
513 | |
---|
514 | /** spherical linear interpolation between two rotation quaternions. |
---|
515 | * t is a value between 0 and 1 that interpolates between from and to. |
---|
516 | * @pre no aliasing problems to worry about ("result" can be "from" or "to" param). |
---|
517 | * @param adjustSign - If true, then slerp will operate by adjusting the sign of the slerp to take shortest path |
---|
518 | * |
---|
519 | * References: |
---|
520 | * <ul> |
---|
521 | * <li> From Adv Anim and Rendering Tech. Pg 364 |
---|
522 | * </ul> |
---|
523 | * @see Quat |
---|
524 | */ |
---|
525 | template <typename DATA_TYPE> |
---|
526 | Quat<DATA_TYPE>& slerp( Quat<DATA_TYPE>& result, const DATA_TYPE t, const Quat<DATA_TYPE>& from, const Quat<DATA_TYPE>& to, bool adjustSign=true) |
---|
527 | { |
---|
528 | const Quat<DATA_TYPE>& p = from; // just an alias to match q |
---|
529 | |
---|
530 | // calc cosine theta |
---|
531 | DATA_TYPE cosom = dot( from, to ); |
---|
532 | |
---|
533 | // adjust signs (if necessary) |
---|
534 | Quat<DATA_TYPE> q; |
---|
535 | if (adjustSign && (cosom < (DATA_TYPE)0.0)) |
---|
536 | { |
---|
537 | cosom = -cosom; |
---|
538 | q[0] = -to[0]; // Reverse all signs |
---|
539 | q[1] = -to[1]; |
---|
540 | q[2] = -to[2]; |
---|
541 | q[3] = -to[3]; |
---|
542 | } |
---|
543 | else |
---|
544 | { |
---|
545 | q = to; |
---|
546 | } |
---|
547 | |
---|
548 | // Calculate coefficients |
---|
549 | DATA_TYPE sclp, sclq; |
---|
550 | if (((DATA_TYPE)1.0 - cosom) > (DATA_TYPE)0.0001) // 0.0001 -> some epsillon |
---|
551 | { |
---|
552 | // Standard case (slerp) |
---|
553 | DATA_TYPE omega, sinom; |
---|
554 | omega = gmtl::Math::aCos( cosom ); // extract theta from dot product's cos theta |
---|
555 | sinom = gmtl::Math::sin( omega ); |
---|
556 | sclp = gmtl::Math::sin( ((DATA_TYPE)1.0 - t) * omega ) / sinom; |
---|
557 | sclq = gmtl::Math::sin( t * omega ) / sinom; |
---|
558 | } |
---|
559 | else |
---|
560 | { |
---|
561 | // Very close, do linear interp (because it's faster) |
---|
562 | sclp = (DATA_TYPE)1.0 - t; |
---|
563 | sclq = t; |
---|
564 | } |
---|
565 | |
---|
566 | result[Xelt] = sclp * p[Xelt] + sclq * q[Xelt]; |
---|
567 | result[Yelt] = sclp * p[Yelt] + sclq * q[Yelt]; |
---|
568 | result[Zelt] = sclp * p[Zelt] + sclq * q[Zelt]; |
---|
569 | result[Welt] = sclp * p[Welt] + sclq * q[Welt]; |
---|
570 | return result; |
---|
571 | } |
---|
572 | |
---|
573 | /** linear interpolation between two quaternions. |
---|
574 | * t is a value between 0 and 1 that interpolates between from and to. |
---|
575 | * @pre no aliasing problems to worry about ("result" can be "from" or "to" param). |
---|
576 | * References: |
---|
577 | * <ul> |
---|
578 | * <li> From Adv Anim and Rendering Tech. Pg 364 |
---|
579 | * </ul> |
---|
580 | * @see Quat |
---|
581 | */ |
---|
582 | template <typename DATA_TYPE> |
---|
583 | Quat<DATA_TYPE>& lerp( Quat<DATA_TYPE>& result, const DATA_TYPE t, const Quat<DATA_TYPE>& from, const Quat<DATA_TYPE>& to) |
---|
584 | { |
---|
585 | // just an alias to match q |
---|
586 | const Quat<DATA_TYPE>& p = from; |
---|
587 | |
---|
588 | // calc cosine theta |
---|
589 | DATA_TYPE cosom = dot( from, to ); |
---|
590 | |
---|
591 | // adjust signs (if necessary) |
---|
592 | Quat<DATA_TYPE> q; |
---|
593 | if (cosom < (DATA_TYPE)0.0) |
---|
594 | { |
---|
595 | q[0] = -to[0]; // Reverse all signs |
---|
596 | q[1] = -to[1]; |
---|
597 | q[2] = -to[2]; |
---|
598 | q[3] = -to[3]; |
---|
599 | } |
---|
600 | else |
---|
601 | { |
---|
602 | q = to; |
---|
603 | } |
---|
604 | |
---|
605 | // do linear interp |
---|
606 | DATA_TYPE sclp, sclq; |
---|
607 | sclp = (DATA_TYPE)1.0 - t; |
---|
608 | sclq = t; |
---|
609 | |
---|
610 | result[Xelt] = sclp * p[Xelt] + sclq * q[Xelt]; |
---|
611 | result[Yelt] = sclp * p[Yelt] + sclq * q[Yelt]; |
---|
612 | result[Zelt] = sclp * p[Zelt] + sclq * q[Zelt]; |
---|
613 | result[Welt] = sclp * p[Welt] + sclq * q[Welt]; |
---|
614 | return result; |
---|
615 | } |
---|
616 | |
---|
617 | /** @} */ |
---|
618 | |
---|
619 | /** @ingroup Compare Quat |
---|
620 | * @name Quat Comparisons |
---|
621 | * @{ |
---|
622 | */ |
---|
623 | |
---|
624 | /** Compare two quaternions for equality. |
---|
625 | * @see isEqual( Quat, Quat ) |
---|
626 | */ |
---|
627 | template <typename DATA_TYPE> |
---|
628 | inline bool operator==( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
629 | { |
---|
630 | return bool( q1[0] == q2[0] && |
---|
631 | q1[1] == q2[1] && |
---|
632 | q1[2] == q2[2] && |
---|
633 | q1[3] == q2[3] ); |
---|
634 | } |
---|
635 | |
---|
636 | /** Compare two quaternions for not-equality. |
---|
637 | * @see isEqual( Quat, Quat ) |
---|
638 | */ |
---|
639 | template <typename DATA_TYPE> |
---|
640 | inline bool operator!=( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2 ) |
---|
641 | { |
---|
642 | return !operator==( q1, q2 ); |
---|
643 | } |
---|
644 | |
---|
645 | /** Compare two quaternions for equality with tolerance. |
---|
646 | */ |
---|
647 | template <typename DATA_TYPE> |
---|
648 | bool isEqual( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2, DATA_TYPE tol = 0.0 ) |
---|
649 | { |
---|
650 | return bool( Math::isEqual( q1[0], q2[0], tol ) && |
---|
651 | Math::isEqual( q1[1], q2[1], tol ) && |
---|
652 | Math::isEqual( q1[2], q2[2], tol ) && |
---|
653 | Math::isEqual( q1[3], q2[3], tol ) ); |
---|
654 | } |
---|
655 | |
---|
656 | /** Compare two quaternions for geometric equivelence (with tolerance). |
---|
657 | * there exist 2 quats for every possible rotation: the original, |
---|
658 | * and its negative. the negative of a rotation quaternion is geometrically |
---|
659 | * equivelent to the original. |
---|
660 | */ |
---|
661 | template <typename DATA_TYPE> |
---|
662 | bool isEquiv( const Quat<DATA_TYPE>& q1, const Quat<DATA_TYPE>& q2, DATA_TYPE tol = 0.0 ) |
---|
663 | { |
---|
664 | return bool( isEqual( q1, q2, tol ) || isEqual( q1, -q2, tol ) ); |
---|
665 | } |
---|
666 | |
---|
667 | /** @} */ |
---|
668 | } |
---|
669 | |
---|
670 | #endif |
---|