1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: MatrixOps.h,v |
---|
10 | * Date modified: 2005/05/16 14:19:44 |
---|
11 | * Version: 1.39 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | #ifndef _GMTL_MATRIXOPS_H_ |
---|
36 | #define _GMTL_MATRIXOPS_H_ |
---|
37 | |
---|
38 | #include <iostream> // for std::cerr |
---|
39 | #include <algorithm> // needed for std::swap |
---|
40 | #include <gmtl/Matrix.h> |
---|
41 | #include <gmtl/Math.h> |
---|
42 | #include <gmtl/Vec.h> |
---|
43 | #include <gmtl/VecOps.h> |
---|
44 | #include <gmtl/Util/Assert.h> |
---|
45 | |
---|
46 | namespace gmtl |
---|
47 | { |
---|
48 | /** @ingroup Ops |
---|
49 | * @name Matrix Operations |
---|
50 | * @{ |
---|
51 | */ |
---|
52 | |
---|
53 | /** Make identity matrix out the matrix. |
---|
54 | * @post Every element is 0 except the matrix's diagonal, whose elements are 1. |
---|
55 | */ |
---|
56 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
57 | inline Matrix<DATA_TYPE, ROWS, COLS>& identity( Matrix<DATA_TYPE, ROWS, COLS>& result ) |
---|
58 | { |
---|
59 | if(result.mState != Matrix<DATA_TYPE, ROWS, COLS>::IDENTITY) // if not already ident |
---|
60 | { |
---|
61 | // TODO: mp |
---|
62 | for (unsigned int r = 0; r < ROWS; ++r) |
---|
63 | for (unsigned int c = 0; c < COLS; ++c) |
---|
64 | result( r, c ) = (DATA_TYPE)0.0; |
---|
65 | |
---|
66 | // TODO: mp |
---|
67 | for (unsigned int x = 0; x < Math::Min( COLS, ROWS ); ++x) |
---|
68 | result( x, x ) = (DATA_TYPE)1.0; |
---|
69 | |
---|
70 | result.mState = Matrix<DATA_TYPE, ROWS, COLS>::IDENTITY; |
---|
71 | // result.mState = Matrix<DATA_TYPE, ROWS, COLS>::FULL; |
---|
72 | } |
---|
73 | |
---|
74 | return result; |
---|
75 | } |
---|
76 | |
---|
77 | |
---|
78 | /** zero out the matrix. |
---|
79 | * @post every element is 0. |
---|
80 | */ |
---|
81 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
82 | inline Matrix<DATA_TYPE, ROWS, COLS>& zero( Matrix<DATA_TYPE, ROWS, COLS>& result ) |
---|
83 | { |
---|
84 | if (result.mState == Matrix<DATA_TYPE, ROWS, COLS>::IDENTITY) |
---|
85 | { |
---|
86 | for (unsigned int x = 0; x < Math::Min( ROWS, COLS ); ++x) |
---|
87 | { |
---|
88 | result( x, x ) = (DATA_TYPE)0; |
---|
89 | } |
---|
90 | } |
---|
91 | else |
---|
92 | { |
---|
93 | for (unsigned int x = 0; x < ROWS*COLS; ++x) |
---|
94 | { |
---|
95 | result.mData[x] = (DATA_TYPE)0; |
---|
96 | } |
---|
97 | } |
---|
98 | result.mState = Matrix<DATA_TYPE, ROWS, COLS>::ORTHOGONAL; |
---|
99 | return result; |
---|
100 | } |
---|
101 | |
---|
102 | |
---|
103 | /** matrix multiply. |
---|
104 | * @PRE: With regard to size (ROWS/COLS): if lhs is m x p, and rhs is p x n, then result is m x n (mult func undefined otherwise) |
---|
105 | * @POST: returns a m x n sized matrix |
---|
106 | * @post: result = lhs * rhs (where rhs is applied first) |
---|
107 | */ |
---|
108 | template <typename DATA_TYPE, unsigned ROWS, unsigned INTERNAL, unsigned COLS> |
---|
109 | inline Matrix<DATA_TYPE, ROWS, COLS>& mult( Matrix<DATA_TYPE, ROWS, COLS>& result, |
---|
110 | const Matrix<DATA_TYPE, ROWS, INTERNAL>& lhs, |
---|
111 | const Matrix<DATA_TYPE, INTERNAL, COLS>& rhs ) |
---|
112 | { |
---|
113 | Matrix<DATA_TYPE, ROWS, COLS> ret_mat; // prevent aliasing |
---|
114 | zero( ret_mat ); |
---|
115 | |
---|
116 | // p. 150 Numerical Analysis (second ed.) |
---|
117 | // if A is m x p, and B is p x n, then AB is m x n |
---|
118 | // (AB)ij = [k = 1 to p] (a)ik (b)kj (where: 1 <= i <= m, 1 <= j <= n) |
---|
119 | for (unsigned int i = 0; i < ROWS; ++i) // 1 <= i <= m |
---|
120 | for (unsigned int j = 0; j < COLS; ++j) // 1 <= j <= n |
---|
121 | for (unsigned int k = 0; k < INTERNAL; ++k) // [k = 1 to p] |
---|
122 | ret_mat( i, j ) += lhs( i, k ) * rhs( k, j ); |
---|
123 | |
---|
124 | // track state |
---|
125 | ret_mat.mState = combineMatrixStates( lhs.mState, rhs.mState ); |
---|
126 | return result = ret_mat; |
---|
127 | } |
---|
128 | |
---|
129 | /** matrix * matrix. |
---|
130 | * @PRE: With regard to size (ROWS/COLS): if lhs is m x p, and rhs is p x n, then result is m x n (mult func undefined otherwise) |
---|
131 | * @POST: returns a m x n sized matrix == lhs * rhs (where rhs is applied first) |
---|
132 | * returns a temporary, is slower. |
---|
133 | */ |
---|
134 | template <typename DATA_TYPE, unsigned ROWS, unsigned INTERNAL, unsigned COLS> |
---|
135 | inline Matrix<DATA_TYPE, ROWS, COLS> operator*( const Matrix<DATA_TYPE, ROWS, INTERNAL>& lhs, |
---|
136 | const Matrix<DATA_TYPE, INTERNAL, COLS>& rhs ) |
---|
137 | { |
---|
138 | Matrix<DATA_TYPE, ROWS, COLS> temporary; |
---|
139 | return mult( temporary, lhs, rhs ); |
---|
140 | } |
---|
141 | |
---|
142 | /** matrix subtraction (algebraic operation for matrix). |
---|
143 | * @PRE: if lhs is m x n, and rhs is m x n, then result is m x n (mult func undefined otherwise) |
---|
144 | * @POST: returns a m x n matrix |
---|
145 | * @TODO: <B>enforce the sizes with templates...</b> |
---|
146 | */ |
---|
147 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
148 | inline Matrix<DATA_TYPE, ROWS, COLS>& sub( Matrix<DATA_TYPE, ROWS, COLS>& result, |
---|
149 | const Matrix<DATA_TYPE, ROWS, COLS>& lhs, |
---|
150 | const Matrix<DATA_TYPE, ROWS, COLS>& rhs ) |
---|
151 | { |
---|
152 | // p. 150 Numerical Analysis (second ed.) |
---|
153 | // if A is m x n, and B is m x n, then AB is m x n |
---|
154 | // (A - B)ij = (a)ij - (b)ij (where: 1 <= i <= m, 1 <= j <= n) |
---|
155 | for (unsigned int i = 0; i < ROWS; ++i) // 1 <= i <= m |
---|
156 | for (unsigned int j = 0; j < COLS; ++j) // 1 <= j <= n |
---|
157 | result( i, j ) = lhs( i, j ) - rhs( i, j ); |
---|
158 | |
---|
159 | // track state |
---|
160 | result.mState = combineMatrixStates( lhs.mState, rhs.mState ); |
---|
161 | return result; |
---|
162 | } |
---|
163 | |
---|
164 | /** matrix addition (algebraic operation for matrix). |
---|
165 | * @PRE: if lhs is m x n, and rhs is m x n, then result is m x n (mult func undefined otherwise) |
---|
166 | * @POST: returns a m x n matrix |
---|
167 | * TODO: <B>enforce the sizes with templates...</b> |
---|
168 | */ |
---|
169 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
170 | inline Matrix<DATA_TYPE, ROWS, COLS>& add( Matrix<DATA_TYPE, ROWS, COLS>& result, |
---|
171 | const Matrix<DATA_TYPE, ROWS, COLS>& lhs, |
---|
172 | const Matrix<DATA_TYPE, ROWS, COLS>& rhs ) |
---|
173 | { |
---|
174 | // p. 150 Numerical Analysis (second ed.) |
---|
175 | // if A is m x n, and B is m x n, then AB is m x n |
---|
176 | // (A - B)ij = (a)ij + (b)ij (where: 1 <= i <= m, 1 <= j <= n) |
---|
177 | for (unsigned int i = 0; i < ROWS; ++i) // 1 <= i <= m |
---|
178 | for (unsigned int j = 0; j < COLS; ++j) // 1 <= j <= n |
---|
179 | result( i, j ) = lhs( i, j ) + rhs( i, j ); |
---|
180 | |
---|
181 | // track state |
---|
182 | result.mState = combineMatrixStates( lhs.mState, rhs.mState ); |
---|
183 | return result; |
---|
184 | } |
---|
185 | |
---|
186 | /** matrix postmultiply. |
---|
187 | * @PRE: args must both be n x n (this function is undefined otherwise) |
---|
188 | * @POST: result' = result * operand |
---|
189 | */ |
---|
190 | template <typename DATA_TYPE, unsigned SIZE> |
---|
191 | inline Matrix<DATA_TYPE, SIZE, SIZE>& postMult( Matrix<DATA_TYPE, SIZE, SIZE>& result, |
---|
192 | const Matrix<DATA_TYPE, SIZE, SIZE>& operand ) |
---|
193 | { |
---|
194 | return mult( result, result, operand ); |
---|
195 | } |
---|
196 | |
---|
197 | /** matrix preMultiply. |
---|
198 | * @PRE: args must both be n x n (this function is undefined otherwise) |
---|
199 | * @POST: result' = operand * result |
---|
200 | */ |
---|
201 | template <typename DATA_TYPE, unsigned SIZE> |
---|
202 | inline Matrix<DATA_TYPE, SIZE, SIZE>& preMult( Matrix<DATA_TYPE, SIZE, SIZE>& result, |
---|
203 | const Matrix<DATA_TYPE, SIZE, SIZE>& operand ) |
---|
204 | { |
---|
205 | return mult( result, operand, result ); |
---|
206 | } |
---|
207 | |
---|
208 | /** matrix postmult (operator*=). |
---|
209 | * does a postmult on the matrix. |
---|
210 | * @PRE: args must both be n x n sized (this function is undefined otherwise) |
---|
211 | * @POST: result' = result * operand (where operand is applied first) |
---|
212 | */ |
---|
213 | template <typename DATA_TYPE, unsigned SIZE> |
---|
214 | inline Matrix<DATA_TYPE, SIZE, SIZE>& operator*=( Matrix<DATA_TYPE, SIZE, SIZE>& result, |
---|
215 | const Matrix<DATA_TYPE, SIZE, SIZE>& operand ) |
---|
216 | { |
---|
217 | return postMult( result, operand ); |
---|
218 | } |
---|
219 | |
---|
220 | /** matrix scalar mult. |
---|
221 | * mult each elt in a matrix by a scalar value. |
---|
222 | * @POST: result = mat * scalar |
---|
223 | */ |
---|
224 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
225 | inline Matrix<DATA_TYPE, ROWS, COLS>& mult( Matrix<DATA_TYPE, ROWS, COLS>& result, const Matrix<DATA_TYPE, ROWS, COLS>& mat, const DATA_TYPE& scalar ) |
---|
226 | { |
---|
227 | for (unsigned i = 0; i < ROWS * COLS; ++i) |
---|
228 | result.mData[i] = mat.mData[i] * scalar; |
---|
229 | result.mState = mat.mState; |
---|
230 | return result; |
---|
231 | } |
---|
232 | |
---|
233 | /** matrix scalar mult. |
---|
234 | * mult each elt in a matrix by a scalar value. |
---|
235 | * @POST: result *= scalar |
---|
236 | */ |
---|
237 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
238 | inline Matrix<DATA_TYPE, ROWS, COLS>& mult( Matrix<DATA_TYPE, ROWS, COLS>& result, DATA_TYPE scalar ) |
---|
239 | { |
---|
240 | for (unsigned i = 0; i < ROWS * COLS; ++i) |
---|
241 | result.mData[i] *= scalar; |
---|
242 | return result; |
---|
243 | } |
---|
244 | |
---|
245 | /** matrix scalar mult (operator*=). |
---|
246 | * multiply matrix elements by a scalar |
---|
247 | * @POST: result *= scalar |
---|
248 | */ |
---|
249 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
250 | inline Matrix<DATA_TYPE, ROWS, COLS>& operator*=( Matrix<DATA_TYPE, ROWS, COLS>& result, const DATA_TYPE& scalar ) |
---|
251 | { |
---|
252 | return mult( result, scalar ); |
---|
253 | } |
---|
254 | |
---|
255 | /** matrix transpose in place. |
---|
256 | * @PRE: needs to be an N x N matrix |
---|
257 | * @POST: flip along diagonal |
---|
258 | */ |
---|
259 | template <typename DATA_TYPE, unsigned SIZE> |
---|
260 | Matrix<DATA_TYPE, SIZE, SIZE>& transpose( Matrix<DATA_TYPE, SIZE, SIZE>& result ) |
---|
261 | { |
---|
262 | // p. 27 game programming gems #1 |
---|
263 | for (unsigned c = 0; c < SIZE; ++c) |
---|
264 | for (unsigned r = c + 1; r < SIZE; ++r) |
---|
265 | std::swap( result( r, c ), result( c, r ) ); |
---|
266 | |
---|
267 | return result; |
---|
268 | } |
---|
269 | |
---|
270 | /** matrix transpose from one type to another (i.e. 3x4 to 4x3) |
---|
271 | * @PRE: source needs to be an M x N matrix, while dest needs to be N x M |
---|
272 | * @POST: flip along diagonal |
---|
273 | */ |
---|
274 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
275 | Matrix<DATA_TYPE, ROWS, COLS>& transpose( Matrix<DATA_TYPE, ROWS, COLS>& result, const Matrix<DATA_TYPE, COLS, ROWS>& source ) |
---|
276 | { |
---|
277 | // in case result is == source... :( |
---|
278 | Matrix<DATA_TYPE, COLS, ROWS> temp = source; |
---|
279 | |
---|
280 | // p. 149 Numerical Analysis (second ed.) |
---|
281 | for (unsigned i = 0; i < ROWS; ++i) |
---|
282 | { |
---|
283 | for (unsigned j = 0; j < COLS; ++j) |
---|
284 | { |
---|
285 | result( i, j ) = temp( j, i ); |
---|
286 | } |
---|
287 | } |
---|
288 | result.mState = temp.mState; |
---|
289 | return result; |
---|
290 | } |
---|
291 | |
---|
292 | /** translational matrix inversion. |
---|
293 | * Matrix inversion that acts on a translational matrix (matrix with only translation) |
---|
294 | * Check for error with Matrix::isError(). |
---|
295 | * @pre: 4x3, 4x4 matrices only |
---|
296 | * @post: result' = inv( result ) |
---|
297 | * @post: If inversion failed, then error bit is set within the Matrix. |
---|
298 | */ |
---|
299 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
300 | inline Matrix<DATA_TYPE, ROWS, COLS>& invertTrans( Matrix<DATA_TYPE, ROWS, COLS>& result, |
---|
301 | const Matrix<DATA_TYPE, ROWS, COLS>& src ) |
---|
302 | { |
---|
303 | gmtlASSERT( ROWS == COLS || COLS == ROWS+1 && "invertTrans supports NxN or Nx(N-1) matrices only" ); |
---|
304 | |
---|
305 | if (&result != &src) |
---|
306 | result = src; // could optimise this a little more (skip the trans copy), favor simplicity for now... |
---|
307 | for (unsigned x = 0; x < (ROWS-1+(COLS-ROWS)); ++x) |
---|
308 | { |
---|
309 | result[x][3] = -result[x][3]; |
---|
310 | } |
---|
311 | return result; |
---|
312 | } |
---|
313 | |
---|
314 | /** orthogonal matrix inversion. |
---|
315 | * Matrix inversion that acts on a affine matrix (matrix with only trans, rot, uniform scale) |
---|
316 | * Check for error with Matrix::isError(). |
---|
317 | * @pre: any size matrix |
---|
318 | * @post: result' = inv( result ) |
---|
319 | * @post: If inversion failed, then error bit is set within the Matrix. |
---|
320 | */ |
---|
321 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
322 | inline Matrix<DATA_TYPE, ROWS, COLS>& invertOrthogonal( Matrix<DATA_TYPE, ROWS, COLS>& result, |
---|
323 | const Matrix<DATA_TYPE, ROWS, COLS>& src ) |
---|
324 | { |
---|
325 | // in case result is == source... :( |
---|
326 | Matrix<DATA_TYPE, ROWS, COLS> temp = src; |
---|
327 | |
---|
328 | // if 3x4, 2x3, etc... can't transpose the last column |
---|
329 | const unsigned int size = Math::Min( ROWS, COLS ); |
---|
330 | |
---|
331 | // p. 149 Numerical Analysis (second ed.) |
---|
332 | for (unsigned i = 0; i < size; ++i) |
---|
333 | { |
---|
334 | for (unsigned j = 0; j < size; ++j) |
---|
335 | { |
---|
336 | result( i, j ) = temp( j, i ); |
---|
337 | } |
---|
338 | } |
---|
339 | result.mState = temp.mState; |
---|
340 | return result; |
---|
341 | } |
---|
342 | |
---|
343 | /** affine matrix inversion. |
---|
344 | * Matrix inversion that acts on a 4x3 affine matrix (matrix with only trans, rot, uniform scale) |
---|
345 | * Check for error with Matrix::isError(). |
---|
346 | * @pre: 3x3, 4x3, 4x4 matrices only |
---|
347 | * @POST: result' = inv( result ) |
---|
348 | * @POST: If inversion failed, then error bit is set within the Matrix. |
---|
349 | */ |
---|
350 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
351 | inline Matrix<DATA_TYPE, ROWS, COLS>& invertAffine( Matrix<DATA_TYPE, ROWS, COLS>& result, |
---|
352 | const Matrix<DATA_TYPE, ROWS, COLS>& source ) |
---|
353 | { |
---|
354 | static const float eps = 0.00000001f; |
---|
355 | |
---|
356 | // in case &result is == &source... :( |
---|
357 | Matrix<DATA_TYPE, ROWS, COLS> src = source; |
---|
358 | |
---|
359 | // The rotational part of the matrix is simply the transpose of the |
---|
360 | // original matrix. |
---|
361 | for (int x = 0; x < 3; ++x) |
---|
362 | for (int y = 0; y < 3; ++y) |
---|
363 | { |
---|
364 | result[x][y] = src[y][x]; |
---|
365 | } |
---|
366 | |
---|
367 | // do non-uniform scale inversion |
---|
368 | if (src.mState & Matrix<DATA_TYPE, ROWS, COLS>::NON_UNISCALE) |
---|
369 | { |
---|
370 | DATA_TYPE l0 = gmtl::lengthSquared( gmtl::Vec<DATA_TYPE, 3>( result[0][0], result[0][1], result[0][2] ) ); |
---|
371 | DATA_TYPE l1 = gmtl::lengthSquared( gmtl::Vec<DATA_TYPE, 3>( result[1][0], result[1][1], result[1][2] ) ); |
---|
372 | DATA_TYPE l2 = gmtl::lengthSquared( gmtl::Vec<DATA_TYPE, 3>( result[2][0], result[2][1], result[2][2] ) ); |
---|
373 | if (gmtl::Math::abs( l0 ) > eps) l0 = 1.0f / l0; |
---|
374 | if (gmtl::Math::abs( l1 ) > eps) l1 = 1.0f / l1; |
---|
375 | if (gmtl::Math::abs( l2 ) > eps) l2 = 1.0f / l2; |
---|
376 | // apply the inverse scale to the 3x3 |
---|
377 | // for each axis: normalize it (1/length), and then mult by inverse scale (1/length) |
---|
378 | result[0][0] *= l0; |
---|
379 | result[0][1] *= l0; |
---|
380 | result[0][2] *= l0; |
---|
381 | result[1][0] *= l1; |
---|
382 | result[1][1] *= l1; |
---|
383 | result[1][2] *= l1; |
---|
384 | result[2][0] *= l2; |
---|
385 | result[2][1] *= l2; |
---|
386 | result[2][2] *= l2; |
---|
387 | } |
---|
388 | |
---|
389 | // handle matrices with translation |
---|
390 | if (COLS == 4) |
---|
391 | { |
---|
392 | // The right column vector of the matrix should always be [ 0 0 0 s ] |
---|
393 | // this represents some shear values |
---|
394 | result[3][0] = result[3][1] = result[3][2] = 0; |
---|
395 | |
---|
396 | // The translation components of the original matrix. |
---|
397 | const DATA_TYPE& tx = src[0][3]; |
---|
398 | const DATA_TYPE& ty = src[1][3]; |
---|
399 | const DATA_TYPE& tz = src[2][3]; |
---|
400 | |
---|
401 | |
---|
402 | // Rresult = -(Tm * Rm) to get the translation part of the inverse |
---|
403 | if (ROWS == 4) |
---|
404 | { |
---|
405 | // invert scale. |
---|
406 | const DATA_TYPE tw = (gmtl::Math::abs( src[3][3] ) > eps) ? 1.0f / src[3][3] : 0.0f; |
---|
407 | |
---|
408 | // handle uniform scale in Nx4 matrices |
---|
409 | result[0][3] = -( result[0][0] * tx + result[0][1] * ty + result[0][2] * tz ) * tw; |
---|
410 | result[1][3] = -( result[1][0] * tx + result[1][1] * ty + result[1][2] * tz ) * tw; |
---|
411 | result[2][3] = -( result[2][0] * tx + result[2][1] * ty + result[2][2] * tz ) * tw; |
---|
412 | result[3][3] = tw; |
---|
413 | } |
---|
414 | else if (ROWS == 3) |
---|
415 | { |
---|
416 | result[0][3] = -( result[0][0] * tx + result[0][1] * ty + result[0][2] * tz ); |
---|
417 | result[1][3] = -( result[1][0] * tx + result[1][1] * ty + result[1][2] * tz ); |
---|
418 | result[2][3] = -( result[2][0] * tx + result[2][1] * ty + result[2][2] * tz ); |
---|
419 | } |
---|
420 | } |
---|
421 | |
---|
422 | |
---|
423 | |
---|
424 | result.mState = src.mState; |
---|
425 | |
---|
426 | return result; |
---|
427 | } |
---|
428 | |
---|
429 | /** Full matrix inversion using Gauss-Jordan elimination. |
---|
430 | * Check for error with Matrix::isError(). |
---|
431 | * @POST: result' = inv( result ) |
---|
432 | * @POST: If inversion failed, then error bit is set within the Matrix. |
---|
433 | */ |
---|
434 | template <typename DATA_TYPE, unsigned SIZE> |
---|
435 | inline Matrix<DATA_TYPE, SIZE, SIZE>& invertFull_GJ( Matrix<DATA_TYPE, SIZE, SIZE>& result, const Matrix<DATA_TYPE, SIZE, SIZE>& src ) |
---|
436 | { |
---|
437 | //gmtlASSERT( ROWS == COLS && "invertFull only works with nxn matrices" ); |
---|
438 | |
---|
439 | const DATA_TYPE pivot_eps(1e-20); // Epsilon for the pivot value test (delta with test against zero) |
---|
440 | |
---|
441 | // Computer inverse of matrix using a Gaussian-Jordan elimination. |
---|
442 | // Uses max pivot at each point |
---|
443 | // See: "Essential Mathmatics for Games" for description |
---|
444 | |
---|
445 | // Do this invert in place |
---|
446 | result = src; |
---|
447 | unsigned swapped[SIZE]; // Track swaps. swapped[3] = 2 means that row 3 was swapped with row 2 |
---|
448 | |
---|
449 | unsigned pivot; |
---|
450 | |
---|
451 | // --- Gaussian elimination step --- // |
---|
452 | // For each column and row |
---|
453 | for(pivot=0; pivot<SIZE;++pivot) |
---|
454 | { |
---|
455 | unsigned pivot_row(pivot); |
---|
456 | DATA_TYPE pivot_value(gmtl::Math::abs(result(pivot_row, pivot))); // Initialize to beginning of current row |
---|
457 | |
---|
458 | // find pivot row - (max pivot element) |
---|
459 | for(unsigned pr=pivot+1;pr<SIZE;++pr) |
---|
460 | { |
---|
461 | const DATA_TYPE cur_val(gmtl::Math::abs(result(pr,pivot))); // get value at current point |
---|
462 | if (cur_val > pivot_value) |
---|
463 | { |
---|
464 | pivot_row = pr; |
---|
465 | pivot_value = cur_val; |
---|
466 | } |
---|
467 | } |
---|
468 | |
---|
469 | if(gmtl::Math::isEqual(DATA_TYPE(0),pivot_value,pivot_eps)) |
---|
470 | { |
---|
471 | std::cerr << "*** pivot = " << pivot_value << " in mat_inv. ***\n"; |
---|
472 | result.setError(); |
---|
473 | return result; |
---|
474 | } |
---|
475 | |
---|
476 | // Check for swap of pivot rows |
---|
477 | swapped[pivot] = pivot_row; |
---|
478 | if(pivot_row != pivot) |
---|
479 | { |
---|
480 | for(unsigned c=0;c<SIZE;++c) |
---|
481 | { std::swap(result(pivot,c), result(pivot_row,c)); } |
---|
482 | } |
---|
483 | // ASSERT: row to use in now in "row" (check that row starts with max pivot value found) |
---|
484 | gmtlASSERT(gmtl::Math::isEqual(pivot_value,gmtl::Math::abs(result(pivot,pivot)),DATA_TYPE(0.00001))); |
---|
485 | |
---|
486 | // Compute pivot factor |
---|
487 | const DATA_TYPE mult_factor(1.0f/pivot_value); |
---|
488 | |
---|
489 | // Set pivot row values |
---|
490 | for(unsigned c=0;c<SIZE;++c) |
---|
491 | { result(pivot,c) *= mult_factor; } |
---|
492 | result(pivot,pivot) = mult_factor; // Copy the 1/pivot since we are inverting in place |
---|
493 | |
---|
494 | // Clear pivot column in other rows (since we are in place) |
---|
495 | // - Subtract current row times result(r,col) so that column element becomes 0 |
---|
496 | for(unsigned row=0;row<SIZE;++row) |
---|
497 | { |
---|
498 | if(row==pivot) // Don't subtract from our row |
---|
499 | { continue; } |
---|
500 | |
---|
501 | const DATA_TYPE sub_mult_factor(result(row,pivot)); |
---|
502 | |
---|
503 | // Clear the pivot column's element (for invers in place) |
---|
504 | // ends up being set to -sub_mult_factor*pivotInverse |
---|
505 | result(row,pivot) = 0; |
---|
506 | |
---|
507 | // subtract the pivot row from this row |
---|
508 | for(unsigned col=0;col<SIZE;++col) |
---|
509 | { result(row,col) -= (sub_mult_factor*result(pivot,col)); } |
---|
510 | } |
---|
511 | } // end: gaussian substitution |
---|
512 | |
---|
513 | |
---|
514 | // Now undo the swaps in column direction in reverse order |
---|
515 | unsigned p(SIZE); |
---|
516 | do |
---|
517 | { |
---|
518 | --p; |
---|
519 | gmtlASSERT(p<SIZE); |
---|
520 | |
---|
521 | // If row was swapped |
---|
522 | if(swapped[p] != p) |
---|
523 | { |
---|
524 | // Swap the column with same index |
---|
525 | for(unsigned r=0; r<SIZE; ++r) |
---|
526 | { std::swap(result(r, p), result(r, swapped[p])); } |
---|
527 | } |
---|
528 | } |
---|
529 | while(p>0); |
---|
530 | |
---|
531 | return result; |
---|
532 | } |
---|
533 | |
---|
534 | |
---|
535 | /** full matrix inversion. |
---|
536 | * Check for error with Matrix::isError(). |
---|
537 | * @POST: result' = inv( result ) |
---|
538 | * @POST: If inversion failed, then error bit is set within the Matrix. |
---|
539 | */ |
---|
540 | template <typename DATA_TYPE, unsigned SIZE> |
---|
541 | inline Matrix<DATA_TYPE, SIZE, SIZE>& invertFull_orig( Matrix<DATA_TYPE, SIZE, SIZE>& result, const Matrix<DATA_TYPE, SIZE, SIZE>& src ) |
---|
542 | { |
---|
543 | /*---------------------------------------------------------------------------* |
---|
544 | | mat_inv: Compute the inverse of a n x n matrix, using the maximum pivot | |
---|
545 | | strategy. n <= MAX1. | |
---|
546 | *---------------------------------------------------------------------------* |
---|
547 | |
---|
548 | Parameters: |
---|
549 | a a n x n square matrix |
---|
550 | b inverse of input a. |
---|
551 | n dimenstion of matrix a. |
---|
552 | */ |
---|
553 | |
---|
554 | const DATA_TYPE* a = src.getData(); |
---|
555 | DATA_TYPE* b = result.mData; |
---|
556 | |
---|
557 | int n(SIZE); |
---|
558 | int i, j, k; |
---|
559 | int r[SIZE], c[SIZE], row[SIZE], col[SIZE]; |
---|
560 | DATA_TYPE m[SIZE][SIZE*2], pivot, max_m, tmp_m, fac; |
---|
561 | |
---|
562 | /* Initialization */ |
---|
563 | for ( i = 0; i < n; i ++ ) |
---|
564 | { |
---|
565 | r[ i] = c[ i] = 0; |
---|
566 | row[ i] = col[ i] = 0; |
---|
567 | } |
---|
568 | |
---|
569 | /* Set working matrix */ |
---|
570 | for ( i = 0; i < n; i++ ) |
---|
571 | { |
---|
572 | for ( j = 0; j < n; j++ ) |
---|
573 | { |
---|
574 | m[ i][ j] = a[ i * n + j]; |
---|
575 | m[ i][ j + n] = ( i == j ) ? (DATA_TYPE)1.0 : (DATA_TYPE)0.0 ; |
---|
576 | } |
---|
577 | } |
---|
578 | |
---|
579 | /* Begin of loop */ |
---|
580 | for ( k = 0; k < n; k++ ) |
---|
581 | { |
---|
582 | /* Choosing the pivot */ |
---|
583 | for ( i = 0, max_m = 0; i < n; i++ ) |
---|
584 | { |
---|
585 | if ( row[ i] ) |
---|
586 | continue; |
---|
587 | for ( j = 0; j < n; j++ ) |
---|
588 | { |
---|
589 | if ( col[ j] ) |
---|
590 | continue; |
---|
591 | tmp_m = gmtl::Math::abs( m[ i][ j]); |
---|
592 | if ( tmp_m > max_m) |
---|
593 | { |
---|
594 | max_m = tmp_m; |
---|
595 | r[ k] = i; |
---|
596 | c[ k] = j; |
---|
597 | } |
---|
598 | } |
---|
599 | } |
---|
600 | row[ r[k] ] = col[ c[k] ] = 1; |
---|
601 | pivot = m[ r[ k] ][ c[ k] ]; |
---|
602 | |
---|
603 | |
---|
604 | if ( gmtl::Math::abs( pivot) <= 1e-20) |
---|
605 | { |
---|
606 | std::cerr << "*** pivot = " << pivot << " in mat_inv. ***\n"; |
---|
607 | result.setError(); |
---|
608 | return result; |
---|
609 | } |
---|
610 | |
---|
611 | /* Normalization */ |
---|
612 | for ( j = 0; j < 2*n; j++ ) |
---|
613 | { |
---|
614 | if ( j == c[ k] ) |
---|
615 | m[ r[ k]][ j] = (DATA_TYPE)1.0; |
---|
616 | else |
---|
617 | m[ r[ k]][ j] /= pivot; |
---|
618 | } |
---|
619 | |
---|
620 | /* Reduction */ |
---|
621 | for ( i = 0; i < n; i++ ) |
---|
622 | { |
---|
623 | if ( i == r[ k] ) |
---|
624 | continue; |
---|
625 | |
---|
626 | for ( j=0, fac = m[ i][ c[k]]; j < 2*n; j++ ) |
---|
627 | { |
---|
628 | if ( j == c[ k] ) |
---|
629 | m[ i][ j] = (DATA_TYPE)0.0; |
---|
630 | else |
---|
631 | m[ i][ j] -= fac * m[ r[k]][ j]; |
---|
632 | } |
---|
633 | } |
---|
634 | } |
---|
635 | |
---|
636 | /* Assign inverse to a matrix */ |
---|
637 | for ( i = 0; i < n; i++ ) |
---|
638 | for ( j = 0; j < n; j++ ) |
---|
639 | row[ i] = ( c[ j] == i ) ? r[ j] : row[ i]; |
---|
640 | |
---|
641 | for ( i = 0; i < n; i++ ) |
---|
642 | for ( j = 0; j < n; j++ ) |
---|
643 | b[ i * n + j] = m[ row[ i]][ j + n]; |
---|
644 | |
---|
645 | // It worked |
---|
646 | result.mState = src.mState; |
---|
647 | return result; |
---|
648 | } |
---|
649 | |
---|
650 | |
---|
651 | /** Invert method. |
---|
652 | * Calls invertFull_orig to do the work. |
---|
653 | */ |
---|
654 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
655 | inline Matrix<DATA_TYPE, ROWS, COLS>& invertFull( Matrix<DATA_TYPE, ROWS, COLS>& result, const Matrix<DATA_TYPE, ROWS, COLS>& src ) |
---|
656 | { |
---|
657 | return invertFull_orig(result,src); |
---|
658 | } |
---|
659 | |
---|
660 | /** smart matrix inversion. |
---|
661 | * Does matrix inversion by intelligently selecting what type of inversion to use depending |
---|
662 | * on the types of operations your Matrix has been through. |
---|
663 | * |
---|
664 | * 5 types of inversion: FULL, AFFINE, ORTHONORMAL, ORTHOGONAL, IDENTITY. |
---|
665 | * |
---|
666 | * Check for error with Matrix::isError(). |
---|
667 | * @POST: result' = inv( result ) |
---|
668 | * @POST: If inversion failed, then error bit is set within the Matrix. |
---|
669 | */ |
---|
670 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
671 | inline Matrix<DATA_TYPE, ROWS, COLS>& invert( Matrix<DATA_TYPE, ROWS, COLS>& result, const Matrix<DATA_TYPE, ROWS, COLS>& src ) |
---|
672 | { |
---|
673 | if (src.mState == Matrix<DATA_TYPE, ROWS, COLS>::IDENTITY ) |
---|
674 | return result = src; |
---|
675 | else if (src.mState == Matrix<DATA_TYPE, ROWS, COLS>::TRANS) |
---|
676 | return invertTrans( result, src ); |
---|
677 | else if (src.mState == Matrix<DATA_TYPE, ROWS, COLS>::ORTHOGONAL) |
---|
678 | return invertOrthogonal( result, src ); |
---|
679 | else if (src.mState == Matrix<DATA_TYPE, ROWS, COLS>::AFFINE || |
---|
680 | src.mState == (Matrix<DATA_TYPE, ROWS, COLS>::AFFINE | Matrix<DATA_TYPE, ROWS, COLS>::NON_UNISCALE)) |
---|
681 | return invertAffine( result, src ); |
---|
682 | else |
---|
683 | return invertFull_orig( result, src ); |
---|
684 | } |
---|
685 | |
---|
686 | /** smart matrix inversion (in place) |
---|
687 | * Does matrix inversion by intelligently selecting what type of inversion to use depending |
---|
688 | * on the types of operations your Matrix has been through. |
---|
689 | * |
---|
690 | * 5 types of inversion: FULL, AFFINE, ORTHONORMAL, ORTHOGONAL, IDENTITY. |
---|
691 | * |
---|
692 | * Check for error with Matrix::isError(). |
---|
693 | * @POST: result' = inv( result ) |
---|
694 | * @POST: If inversion failed, then error bit is set within the Matrix. |
---|
695 | */ |
---|
696 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
697 | inline Matrix<DATA_TYPE, ROWS, COLS>& invert( Matrix<DATA_TYPE, ROWS, COLS>& result ) |
---|
698 | { |
---|
699 | return invert( result, result ); |
---|
700 | } |
---|
701 | |
---|
702 | /** @} */ |
---|
703 | |
---|
704 | /** @ingroup Compare |
---|
705 | * @name Matrix Comparitors |
---|
706 | * @{ |
---|
707 | */ |
---|
708 | |
---|
709 | /** Tests 2 matrices for equality |
---|
710 | * @param lhs The first matrix |
---|
711 | * @param rhs The second matrix |
---|
712 | * @pre Both matrices must be of the same size. |
---|
713 | * @return true if the matrices have the same element values; false otherwise |
---|
714 | */ |
---|
715 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
716 | inline bool operator==( const Matrix<DATA_TYPE, ROWS, COLS>& lhs, const Matrix<DATA_TYPE, ROWS, COLS>& rhs ) |
---|
717 | { |
---|
718 | for (unsigned int i = 0; i < ROWS*COLS; ++i) |
---|
719 | { |
---|
720 | if (lhs.mData[i] != rhs.mData[i]) |
---|
721 | { |
---|
722 | return false; |
---|
723 | } |
---|
724 | } |
---|
725 | |
---|
726 | return true; |
---|
727 | |
---|
728 | /* Would like this |
---|
729 | return( lhs[0] == rhs[0] && |
---|
730 | lhs[1] == rhs[1] && |
---|
731 | lhs[2] == rhs[2] ); |
---|
732 | */ |
---|
733 | } |
---|
734 | |
---|
735 | /** Tests 2 matrices for inequality |
---|
736 | * @param lhs The first matrix |
---|
737 | * @param rhs The second matrix |
---|
738 | * @pre Both matrices must be of the same size. |
---|
739 | * @return false if the matrices differ on any element value; true otherwise |
---|
740 | */ |
---|
741 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
742 | inline bool operator!=( const Matrix<DATA_TYPE, ROWS, COLS>& lhs, const Matrix<DATA_TYPE, ROWS, COLS>& rhs ) |
---|
743 | { |
---|
744 | return bool( !(lhs == rhs) ); |
---|
745 | } |
---|
746 | |
---|
747 | /** Tests 2 matrices for equality within a tolerance |
---|
748 | * @param lhs The first matrix |
---|
749 | * @param rhs The second matrix |
---|
750 | * @param eps The tolerance value |
---|
751 | * @pre Both matrices must be of the same size. |
---|
752 | * @return true if the matrices' elements are within the tolerance value of each other; false otherwise |
---|
753 | */ |
---|
754 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
755 | inline bool isEqual( const Matrix<DATA_TYPE, ROWS, COLS>& lhs, const Matrix<DATA_TYPE, ROWS, COLS>& rhs, const DATA_TYPE eps = 0 ) |
---|
756 | { |
---|
757 | gmtlASSERT( eps >= (DATA_TYPE)0 ); |
---|
758 | |
---|
759 | for (unsigned int i = 0; i < ROWS*COLS; ++i) |
---|
760 | { |
---|
761 | if (!Math::isEqual( lhs.mData[i], rhs.mData[i], eps )) |
---|
762 | return false; |
---|
763 | } |
---|
764 | return true; |
---|
765 | } |
---|
766 | /** @} */ |
---|
767 | |
---|
768 | } // end of namespace gmtl |
---|
769 | |
---|
770 | #endif |
---|