1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: Matrix.h,v |
---|
10 | * Date modified: 2004/11/22 15:04:05 |
---|
11 | * Version: 1.39 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | #ifndef _GMTL_MATRIX_H_ |
---|
36 | #define _GMTL_MATRIX_H_ |
---|
37 | |
---|
38 | #include <gmtl/Defines.h> |
---|
39 | #include <gmtl/Math.h> |
---|
40 | #include <gmtl/Util/Assert.h> |
---|
41 | #include <gmtl/Util/StaticAssert.h> |
---|
42 | |
---|
43 | namespace gmtl |
---|
44 | { |
---|
45 | |
---|
46 | /** |
---|
47 | * State tracked NxM dimensional Matrix (ordered in memory by Column) |
---|
48 | * |
---|
49 | * <b>Memory mapping:</b> |
---|
50 | * |
---|
51 | * gmtl::Matrix stores its elements in column major order. |
---|
52 | * That is, it stores each column end-to-end in memory. |
---|
53 | * |
---|
54 | * Typically, for 3D transform matrices, the 3x3 rotation is |
---|
55 | * in the first three columns, while the translation is in the last column. |
---|
56 | * |
---|
57 | * This memory alignment is chosen for compatibility with the OpenGL graphics |
---|
58 | * API and others, which take matrices in this specific column major ordering |
---|
59 | * described above. |
---|
60 | * |
---|
61 | * See the interfaces for operator[r][c] and operator(r,c) for how to iterate |
---|
62 | * over columns and rows for a GMTL Matrix. |
---|
63 | * |
---|
64 | * <b>NOTES on Matrix memory layout and [][] accessors:</b> |
---|
65 | * <ul> |
---|
66 | * <li> gmtl Matrix memory is "column major" ordered, where columns are end |
---|
67 | * to end in memory, while a C/C++ Matrix accessed the same way |
---|
68 | * (using operator[][]) as a gmtl Matrix is "row major" ordered. |
---|
69 | * |
---|
70 | * <li> As a result, a gmtl matrix stores elements in memory transposed from |
---|
71 | * the equivelent matrix defined using an array in the C/C++ |
---|
72 | * language, assuming they are accessed the same way (see example). |
---|
73 | * <ul> |
---|
74 | * <li> Illustrative Example: <br> |
---|
75 | * Given two flavors of matrix, C/C++, and gmtl: <br> |
---|
76 | * float cmat[n][m]; and gmtl::Matrix<float, n, m> mat; <br> |
---|
77 | * Writing values into each, while accessing them the same: <br> |
---|
78 | * cmat[row][col] = mat[row][col] = some_values[x]; <br> |
---|
79 | * Then reading values from the matrix array: <br> |
---|
80 | * ((float*)cmat) and mat.getData() <br> |
---|
81 | * <i>Will yield pointers to memory containing matrices that are the transpose of each other.</i> |
---|
82 | * </ul> |
---|
83 | * <li> In practice, the differences between GMTL and C/C++ defined matrices |
---|
84 | * all depends how you iterate over your matrix. <br> |
---|
85 | * If gmtl is accessed mat[row][col] and C/C++ is accessed mat[col][row], then |
---|
86 | * memory-wise, these two will yield the same memory mapping (column major as described above), |
---|
87 | * thus, are equivelent and can both be used interchangably in many popular graphics APIs |
---|
88 | * such as OpenGL, DirectX, and others. |
---|
89 | * |
---|
90 | * <li> In C/C++ access of a matrix via mat[row][col] yields this memory mapping after using ((float*)mat) to return it:<br> |
---|
91 | * <pre> |
---|
92 | * (0,0) (0,1) (0,2) (0,3) <=== Contiguous memory arranged by row |
---|
93 | * (1,0) (1,1) (1,2) (1,3) <=== Contiguous |
---|
94 | * (2,0) (2,1) (2,2) (2,3) <=== Contiguous |
---|
95 | * (3,0) (3,1) (3,2) (3,3) <=== Contiguous |
---|
96 | * |
---|
97 | * or linearly if you prefer: |
---|
98 | * (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2) (3,3) |
---|
99 | * </pre> |
---|
100 | * |
---|
101 | * <li> In gmtl, access of a matrix via mat[row][col] yields this memory mapping after using getData() to return it:<br> |
---|
102 | * <pre> |
---|
103 | * (0,0) (0,1) (0,2) (0,3) |
---|
104 | * (1,0) (1,1) (1,2) (1,3) |
---|
105 | * (2,0) (2,1) (2,2) (2,3) |
---|
106 | * (3,0) (3,1) (3,2) (3,3) |
---|
107 | * ^ ^ ^ ^ |
---|
108 | * --1-----2-----3-----4---- Contiguous memory arranged by column |
---|
109 | * |
---|
110 | * or linearly if you prefer: |
---|
111 | * (0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0,3) (1,3) (2,3) (3,3) |
---|
112 | * </pre> |
---|
113 | * </ul> |
---|
114 | * |
---|
115 | * <b>State Tracking:</b> |
---|
116 | * |
---|
117 | * The idea of a state-tracked matrix is that if we track the information |
---|
118 | * as it is stored into the matrix, then other operations could make more optimal |
---|
119 | * descisions based on the known state. A good example is in matrix invertion, |
---|
120 | * a reletively costly operation for matrices. However, if we know the matrix state |
---|
121 | * is (i.e.) ORTHOGONAL, then inversion becomes a simple transpose operation. |
---|
122 | * There are also optimizations with multiplication, as well as other. |
---|
123 | * |
---|
124 | * One side effect of this state tracking is that EVERY MATRIC FUNCTION NEEDS TO |
---|
125 | * TRACK STATE. This means that anyone writing custom methods, or extentions to |
---|
126 | * gmtl, will need to pay close attention to matrix state. |
---|
127 | * |
---|
128 | * To facilitate state tracking in extensions, we've provided the function |
---|
129 | * gmtl::combineMatrixStates() to help in determining state based on two |
---|
130 | * combined matrices. |
---|
131 | * @see Matrix44f |
---|
132 | * @see Matrix44d |
---|
133 | * @ingroup Types |
---|
134 | */ |
---|
135 | template <typename DATA_TYPE, unsigned ROWS, unsigned COLS> |
---|
136 | class Matrix |
---|
137 | { |
---|
138 | public: |
---|
139 | // This is a hack to work around a bug with GCC 3.3 on Mac OS X where |
---|
140 | // boost::is_polymorphic returns a false positive. The details can be |
---|
141 | // found in the Boost.Python FAQ: |
---|
142 | // http://www.boost.org/libs/python/doc/v2/faq.html#macosx |
---|
143 | #if defined(__MACH__) && defined(__APPLE_CC__) && defined(__GNUC__) && \ |
---|
144 | __GNUC__ == 3 && __GNUC_MINOR__ == 3 |
---|
145 | bool dummy_; |
---|
146 | #endif |
---|
147 | |
---|
148 | /** use this to declare single value types of the same type as this matrix. |
---|
149 | */ |
---|
150 | typedef DATA_TYPE DataType; |
---|
151 | enum Params |
---|
152 | { |
---|
153 | Rows = ROWS, Cols = COLS |
---|
154 | }; |
---|
155 | |
---|
156 | /** Helper class for Matrix op[]. |
---|
157 | * This class encapsulates the row that the user is accessing |
---|
158 | * and implements a new op[] that passes the column to use |
---|
159 | */ |
---|
160 | class RowAccessor |
---|
161 | { |
---|
162 | public: |
---|
163 | typedef DATA_TYPE DataType; |
---|
164 | |
---|
165 | RowAccessor(Matrix<DATA_TYPE,ROWS,COLS>* mat, const unsigned row) |
---|
166 | : mMat(mat), mRow(row) |
---|
167 | { |
---|
168 | gmtlASSERT(row < ROWS); |
---|
169 | gmtlASSERT(NULL != mat); |
---|
170 | } |
---|
171 | |
---|
172 | DATA_TYPE& operator[](const unsigned column) |
---|
173 | { |
---|
174 | gmtlASSERT(column < COLS); |
---|
175 | return (*mMat)(mRow,column); |
---|
176 | } |
---|
177 | |
---|
178 | Matrix<DATA_TYPE,ROWS,COLS>* mMat; |
---|
179 | unsigned mRow; /** The row being accessed */ |
---|
180 | }; |
---|
181 | |
---|
182 | /** Helper class for Matrix op[] const. |
---|
183 | * This class encapsulates the row that the user is accessing |
---|
184 | * and implements a new op[] that passes the column to use |
---|
185 | */ |
---|
186 | class ConstRowAccessor |
---|
187 | { |
---|
188 | public: |
---|
189 | typedef DATA_TYPE DataType; |
---|
190 | |
---|
191 | ConstRowAccessor( const Matrix<DATA_TYPE,ROWS,COLS>* mat, |
---|
192 | const unsigned row ) |
---|
193 | : mMat( mat ), mRow( row ) |
---|
194 | { |
---|
195 | gmtlASSERT( row < ROWS ); |
---|
196 | gmtlASSERT( NULL != mat ); |
---|
197 | } |
---|
198 | |
---|
199 | const DATA_TYPE& operator[](const unsigned column) const |
---|
200 | { |
---|
201 | gmtlASSERT(column < COLS); |
---|
202 | return (*mMat)(mRow,column); |
---|
203 | } |
---|
204 | |
---|
205 | const Matrix<DATA_TYPE,ROWS,COLS>* mMat; |
---|
206 | unsigned mRow; /** The row being accessed */ |
---|
207 | }; |
---|
208 | |
---|
209 | /** describes the xforms that this matrix has been through. */ |
---|
210 | enum XformState |
---|
211 | { |
---|
212 | // identity matrix. |
---|
213 | IDENTITY = 1, |
---|
214 | |
---|
215 | // only translation, can simply negate that column |
---|
216 | TRANS = 2, |
---|
217 | |
---|
218 | // able to tranpose to get the inverse. only rotation component is set |
---|
219 | ORTHOGONAL = 4, |
---|
220 | |
---|
221 | // orthogonal, and normalized axes. |
---|
222 | //ORTHONORMAL = 8, |
---|
223 | |
---|
224 | // leaves the homogeneous coordinate unchanged - that is, in which the last column is (0,0,0,s). |
---|
225 | // can include rotation, uniform scale, and translation, but no shearing or nonuniform scaling |
---|
226 | // This can optionally be combined with the NON_UNISCALE state to indicate there is also non-uniform scale |
---|
227 | AFFINE = 16, |
---|
228 | |
---|
229 | // AFFINE matrix with non-uniform scale, a matrix cannot |
---|
230 | // have this state without also having AFFINE (must be or'd together). |
---|
231 | NON_UNISCALE = 32, |
---|
232 | |
---|
233 | // fully set matrix containing more information than the above, or state is unknown, |
---|
234 | // or unclassifiable in terms of the above. |
---|
235 | FULL = 64, |
---|
236 | |
---|
237 | // error bit |
---|
238 | XFORM_ERROR = 128 |
---|
239 | }; |
---|
240 | |
---|
241 | /** Default Constructor (Identity constructor) */ |
---|
242 | Matrix() |
---|
243 | { |
---|
244 | /** @todo mp */ |
---|
245 | for (unsigned int r = 0; r < ROWS; ++r) |
---|
246 | { |
---|
247 | for (unsigned int c = 0; c < COLS; ++c) |
---|
248 | { this->operator()( r, c ) = (DATA_TYPE)0.0; } |
---|
249 | } |
---|
250 | |
---|
251 | /** @todo mp */ |
---|
252 | for (unsigned int x = 0; x < Math::Min( COLS, ROWS ); ++x) |
---|
253 | { this->operator()( x, x ) = (DATA_TYPE)1.0; } |
---|
254 | |
---|
255 | /** @todo Set initial state to IDENTITY and test other stuff */ |
---|
256 | mState = IDENTITY; |
---|
257 | } |
---|
258 | |
---|
259 | /** copy constructor */ |
---|
260 | Matrix( const Matrix<DATA_TYPE, ROWS, COLS>& matrix ) |
---|
261 | { |
---|
262 | this->set( matrix.getData() ); |
---|
263 | mState = matrix.mState; |
---|
264 | } |
---|
265 | |
---|
266 | /** element wise setter for 2x2. |
---|
267 | * @note variable names specify the row,column number to put the data into |
---|
268 | * @todo needs mp!! |
---|
269 | */ |
---|
270 | void set( DATA_TYPE v00, DATA_TYPE v01, |
---|
271 | DATA_TYPE v10, DATA_TYPE v11 ) |
---|
272 | { |
---|
273 | GMTL_STATIC_ASSERT( (ROWS == 2 && COLS == 2), Set_called_when_Matrix_not_of_size_2_2 ); |
---|
274 | mData[0] = v00; |
---|
275 | mData[1] = v10; |
---|
276 | mData[2] = v01; |
---|
277 | mData[3] = v11; |
---|
278 | mState = FULL; |
---|
279 | } |
---|
280 | |
---|
281 | /** element wise setter for 2x3. |
---|
282 | * @todo needs mp!! |
---|
283 | */ |
---|
284 | void set( DATA_TYPE v00, DATA_TYPE v01, DATA_TYPE v02, |
---|
285 | DATA_TYPE v10, DATA_TYPE v11, DATA_TYPE v12 ) |
---|
286 | { |
---|
287 | GMTL_STATIC_ASSERT( (ROWS == 2 && COLS == 3), Set_called_when_Matrix_not_of_size_2_3 ); |
---|
288 | mData[0] = v00; |
---|
289 | mData[1] = v10; |
---|
290 | mData[2] = v01; |
---|
291 | mData[3] = v11; |
---|
292 | mData[4] = v02; |
---|
293 | mData[5] = v12; |
---|
294 | mState = FULL; |
---|
295 | } |
---|
296 | |
---|
297 | /** element wise setter for 3x3. |
---|
298 | * @todo needs mp!! |
---|
299 | */ |
---|
300 | void set( DATA_TYPE v00, DATA_TYPE v01, DATA_TYPE v02, |
---|
301 | DATA_TYPE v10, DATA_TYPE v11, DATA_TYPE v12, |
---|
302 | DATA_TYPE v20, DATA_TYPE v21, DATA_TYPE v22) |
---|
303 | { |
---|
304 | GMTL_STATIC_ASSERT( (ROWS == 3 && COLS == 3), Set_called_when_Matrix_not_of_size_3_3 ); |
---|
305 | mData[0] = v00; |
---|
306 | mData[1] = v10; |
---|
307 | mData[2] = v20; |
---|
308 | |
---|
309 | mData[3] = v01; |
---|
310 | mData[4] = v11; |
---|
311 | mData[5] = v21; |
---|
312 | |
---|
313 | mData[6] = v02; |
---|
314 | mData[7] = v12; |
---|
315 | mData[8] = v22; |
---|
316 | mState = FULL; |
---|
317 | } |
---|
318 | |
---|
319 | /** element wise setter for 3x4. |
---|
320 | * @todo needs mp!! currently no way for a 4x3, .... |
---|
321 | */ |
---|
322 | void set( DATA_TYPE v00, DATA_TYPE v01, DATA_TYPE v02, DATA_TYPE v03, |
---|
323 | DATA_TYPE v10, DATA_TYPE v11, DATA_TYPE v12, DATA_TYPE v13, |
---|
324 | DATA_TYPE v20, DATA_TYPE v21, DATA_TYPE v22, DATA_TYPE v23) |
---|
325 | { |
---|
326 | GMTL_STATIC_ASSERT( (ROWS == 3 && COLS == 4), Set_called_when_Matrix_not_of_size_3_4 ); |
---|
327 | mData[0] = v00; |
---|
328 | mData[1] = v10; |
---|
329 | mData[2] = v20; |
---|
330 | mData[3] = v01; |
---|
331 | mData[4] = v11; |
---|
332 | mData[5] = v21; |
---|
333 | mData[6] = v02; |
---|
334 | mData[7] = v12; |
---|
335 | mData[8] = v22; |
---|
336 | |
---|
337 | // right row |
---|
338 | mData[9] = v03; |
---|
339 | mData[10] = v13; |
---|
340 | mData[11] = v23; |
---|
341 | mState = FULL; |
---|
342 | } |
---|
343 | |
---|
344 | /** element wise setter for 4x4. |
---|
345 | * @todo needs mp!! currently no way for a 4x3, .... |
---|
346 | */ |
---|
347 | void set( DATA_TYPE v00, DATA_TYPE v01, DATA_TYPE v02, DATA_TYPE v03, |
---|
348 | DATA_TYPE v10, DATA_TYPE v11, DATA_TYPE v12, DATA_TYPE v13, |
---|
349 | DATA_TYPE v20, DATA_TYPE v21, DATA_TYPE v22, DATA_TYPE v23, |
---|
350 | DATA_TYPE v30, DATA_TYPE v31, DATA_TYPE v32, DATA_TYPE v33 ) |
---|
351 | { |
---|
352 | GMTL_STATIC_ASSERT( (ROWS == 4 && COLS == 4), Set_called_when_Matrix_not_of_size_4_4 ); |
---|
353 | mData[0] = v00; |
---|
354 | mData[1] = v10; |
---|
355 | mData[2] = v20; |
---|
356 | mData[4] = v01; |
---|
357 | mData[5] = v11; |
---|
358 | mData[6] = v21; |
---|
359 | mData[8] = v02; |
---|
360 | mData[9] = v12; |
---|
361 | mData[10] = v22; |
---|
362 | |
---|
363 | // right row |
---|
364 | mData[12] = v03; |
---|
365 | mData[13] = v13; |
---|
366 | mData[14] = v23; |
---|
367 | |
---|
368 | // bottom row |
---|
369 | mData[3] = v30; |
---|
370 | mData[7] = v31; |
---|
371 | mData[11] = v32; |
---|
372 | mData[15] = v33; |
---|
373 | mState = FULL; |
---|
374 | } |
---|
375 | |
---|
376 | /** comma operator |
---|
377 | * @todo implement this! |
---|
378 | */ |
---|
379 | //void operator,()( DATA_TYPE b ) {} |
---|
380 | |
---|
381 | /** set the matrix to the given data. |
---|
382 | * This function is useful to copy matrix data from another math library. |
---|
383 | * |
---|
384 | * <h3> "Example (to a matrix using an external math library):" </h3> |
---|
385 | * \code |
---|
386 | * pfMatrix other_matrix; |
---|
387 | * other_matrix.setRot( 90, 1, 0, 0 ); |
---|
388 | * |
---|
389 | * gmtl::Matrix44f mat; |
---|
390 | * mat.set( other_matrix.getFloatPtr() ); |
---|
391 | * \endcode |
---|
392 | * |
---|
393 | * WARNING: this isn't really safe, size and datatype are not enforced by |
---|
394 | * the compiler. |
---|
395 | * @pre data is in the native format of the gmtl::Matrix class, if not, |
---|
396 | * then you might be able to use the setTranspose function. |
---|
397 | * @pre i.e. in a 4x4 data[0-3] is the 1st column, data[4-7] is 2nd, etc... |
---|
398 | */ |
---|
399 | void set( const DATA_TYPE* data ) |
---|
400 | { |
---|
401 | /** @todo mp */ |
---|
402 | for (unsigned int x = 0; x < ROWS * COLS; ++x) |
---|
403 | mData[x] = data[x]; |
---|
404 | mState = FULL; |
---|
405 | } |
---|
406 | |
---|
407 | /** set the matrix to the transpose of the given data. |
---|
408 | * normally set() takes raw matrix data in column by column order, |
---|
409 | * this function allows you to pass in row by row data. |
---|
410 | * |
---|
411 | * Normally you'll use this function if you want to use a float array |
---|
412 | * to init the matrix (see code example). |
---|
413 | * |
---|
414 | * <h3> "Example (to set a [15 -4 20] translation using float array):" </h3> |
---|
415 | * \code |
---|
416 | * float data[] = { 1, 0, 0, 15, |
---|
417 | * 0, 1, 0, -4, |
---|
418 | * 0, 0, 1, 20, |
---|
419 | * 0, 0, 0, 1 }; |
---|
420 | * gmtl::Matrix44f mat; |
---|
421 | * mat.setTranspose( data ); |
---|
422 | * \endcode |
---|
423 | * |
---|
424 | * WARNING: this isn't really safe, size and datatype are not enforced by |
---|
425 | * the compiler. |
---|
426 | * @pre ptr is in the transpose of the native format of the Matrix class |
---|
427 | * @pre i.e. in a 4x4 data[0-3] is the 1st row, data[4-7] is 2nd, etc... |
---|
428 | */ |
---|
429 | void setTranspose( const DATA_TYPE* data ) |
---|
430 | { |
---|
431 | /** @todo metaprog */ |
---|
432 | for (unsigned int r = 0; r < ROWS; ++r) |
---|
433 | for (unsigned int c = 0; c < COLS; ++c) |
---|
434 | this->operator()( r, c ) = data[(r * COLS) + c]; |
---|
435 | mState = FULL; |
---|
436 | } |
---|
437 | |
---|
438 | /** access [row, col] in the matrix |
---|
439 | * WARNING: If you set data in the matrix (using this interface), |
---|
440 | * you are required to set mState |
---|
441 | * appropriately, failure to do so will result in incorrect |
---|
442 | * calculations by other functions in GMTL. If you are unsure |
---|
443 | * about how to set mState, set it to FULL and you will be sure |
---|
444 | * to get the correct result at the cost of some performance. |
---|
445 | */ |
---|
446 | DATA_TYPE& operator()( const unsigned row, const unsigned column ) |
---|
447 | { |
---|
448 | gmtlASSERT( (row < ROWS) && (column < COLS) ); |
---|
449 | return mData[column*ROWS + row]; |
---|
450 | } |
---|
451 | |
---|
452 | /** access [row, col] in the matrix (const version) */ |
---|
453 | const DATA_TYPE& operator()( const unsigned row, const unsigned column ) const |
---|
454 | { |
---|
455 | gmtlASSERT( (row < ROWS) && (column < COLS) ); |
---|
456 | return mData[column*ROWS + row]; |
---|
457 | } |
---|
458 | |
---|
459 | /** bracket operator |
---|
460 | * WARNING: If you set data in the matrix (using this interface), |
---|
461 | * you are required to set mState |
---|
462 | * appropriately, failure to do so will result in incorrect |
---|
463 | * calculations by other functions in GMTL. If you are unsure |
---|
464 | * about how to set mState, set it to FULL and you will be sure |
---|
465 | * to get the correct result at the cost of some performance. |
---|
466 | */ |
---|
467 | RowAccessor operator[]( const unsigned row ) |
---|
468 | { |
---|
469 | return RowAccessor(this, row); |
---|
470 | } |
---|
471 | |
---|
472 | /** bracket operator (const version) */ |
---|
473 | ConstRowAccessor operator[]( const unsigned row ) const |
---|
474 | { |
---|
475 | return ConstRowAccessor( this, row ); |
---|
476 | } |
---|
477 | |
---|
478 | /* |
---|
479 | // bracket operator |
---|
480 | const DATA_TYPE& operator[]( const unsigned i ) const |
---|
481 | { |
---|
482 | gmtlASSERT( i < (ROWS*COLS) ); |
---|
483 | return mData[i]; |
---|
484 | } |
---|
485 | */ |
---|
486 | |
---|
487 | /** Gets a DATA_TYPE pointer to the matrix data. |
---|
488 | * @return Returns a pointer to the head of the matrix data. |
---|
489 | */ |
---|
490 | const DATA_TYPE* getData() const { return (DATA_TYPE*)mData; } |
---|
491 | |
---|
492 | bool isError() |
---|
493 | { |
---|
494 | return mState & XFORM_ERROR; |
---|
495 | } |
---|
496 | void setError() |
---|
497 | { |
---|
498 | mState |= XFORM_ERROR; |
---|
499 | } |
---|
500 | |
---|
501 | void setState(int state) |
---|
502 | { mState = state; } |
---|
503 | |
---|
504 | public: |
---|
505 | /** Column major. In other words {Column1, Column2, Column3, Column4} in memory |
---|
506 | * access element mData[column][row] |
---|
507 | * WARNING: If you set data in the matrix (using this interface), |
---|
508 | * you are required to set mState appropriately, |
---|
509 | * failure to do so will result in incorrect |
---|
510 | * calculations by other functions in GMTL. If you are unsure |
---|
511 | * about how to set mState, set it to FULL and you will be sure |
---|
512 | * to get the correct result at the cost of some performance. |
---|
513 | */ |
---|
514 | DATA_TYPE mData[COLS*ROWS]; |
---|
515 | |
---|
516 | /** describes what xforms are in this matrix */ |
---|
517 | int mState; |
---|
518 | }; |
---|
519 | |
---|
520 | typedef Matrix<float, 2, 2> Matrix22f; |
---|
521 | typedef Matrix<double, 2, 2> Matrix22d; |
---|
522 | typedef Matrix<float, 2, 3> Matrix23f; |
---|
523 | typedef Matrix<double, 2, 3> Matrix23d; |
---|
524 | typedef Matrix<float, 3, 3> Matrix33f; |
---|
525 | typedef Matrix<double, 3, 3> Matrix33d; |
---|
526 | typedef Matrix<float, 3, 4> Matrix34f; |
---|
527 | typedef Matrix<double, 3, 4> Matrix34d; |
---|
528 | typedef Matrix<float, 4, 4> Matrix44f; |
---|
529 | typedef Matrix<double, 4, 4> Matrix44d; |
---|
530 | |
---|
531 | /** 32bit floating point 2x2 identity matrix */ |
---|
532 | const Matrix22f MAT_IDENTITY22F = Matrix22f(); |
---|
533 | |
---|
534 | /** 64bit floating point 2x2 identity matrix */ |
---|
535 | const Matrix22d MAT_IDENTITY22D = Matrix22d(); |
---|
536 | |
---|
537 | /** 32bit floating point 2x2 identity matrix */ |
---|
538 | const Matrix23f MAT_IDENTITY23F = Matrix23f(); |
---|
539 | |
---|
540 | /** 64bit floating point 2x2 identity matrix */ |
---|
541 | const Matrix23d MAT_IDENTITY23D = Matrix23d(); |
---|
542 | |
---|
543 | /** 32bit floating point 3x3 identity matrix */ |
---|
544 | const Matrix33f MAT_IDENTITY33F = Matrix33f(); |
---|
545 | |
---|
546 | /** 64bit floating point 3x3 identity matrix */ |
---|
547 | const Matrix33d MAT_IDENTITY33D = Matrix33d(); |
---|
548 | |
---|
549 | /** 32bit floating point 3x4 identity matrix */ |
---|
550 | const Matrix34f MAT_IDENTITY34F = Matrix34f(); |
---|
551 | |
---|
552 | /** 64bit floating point 3x4 identity matrix */ |
---|
553 | const Matrix34d MAT_IDENTITY34D = Matrix34d(); |
---|
554 | |
---|
555 | /** 32bit floating point 4x4 identity matrix */ |
---|
556 | const Matrix44f MAT_IDENTITY44F = Matrix44f(); |
---|
557 | |
---|
558 | /** 64bit floating point 4x4 identity matrix */ |
---|
559 | const Matrix44d MAT_IDENTITY44D = Matrix44d(); |
---|
560 | |
---|
561 | /** utility function for use by matrix operations. |
---|
562 | * given two matrices, when combined with set(..) or xform(..) types of operations, |
---|
563 | * compute what matrixstate will the resulting matrix have? |
---|
564 | */ |
---|
565 | inline int combineMatrixStates( int state1, int state2 ) |
---|
566 | { |
---|
567 | switch (state1) |
---|
568 | { |
---|
569 | case Matrix44f::IDENTITY: |
---|
570 | switch (state2) |
---|
571 | { |
---|
572 | case Matrix44f::XFORM_ERROR: return state2; |
---|
573 | case Matrix44f::NON_UNISCALE: return Matrix44f::XFORM_ERROR; |
---|
574 | default: return state2; |
---|
575 | } |
---|
576 | case Matrix44f::TRANS: |
---|
577 | switch (state2) |
---|
578 | { |
---|
579 | case Matrix44f::IDENTITY: return state1; |
---|
580 | case Matrix44f::ORTHOGONAL: return Matrix44f::AFFINE; |
---|
581 | case Matrix44f::NON_UNISCALE: return Matrix44f::XFORM_ERROR; |
---|
582 | default: return state2; |
---|
583 | } |
---|
584 | case Matrix44f::ORTHOGONAL: |
---|
585 | switch (state2) |
---|
586 | { |
---|
587 | case Matrix44f::IDENTITY: return state1; |
---|
588 | case Matrix44f::TRANS: return Matrix44f::AFFINE; |
---|
589 | case Matrix44f::NON_UNISCALE: return Matrix44f::XFORM_ERROR; |
---|
590 | default: return state2; |
---|
591 | } |
---|
592 | case Matrix44f::AFFINE: |
---|
593 | switch (state2) |
---|
594 | { |
---|
595 | case Matrix44f::IDENTITY: |
---|
596 | case Matrix44f::TRANS: |
---|
597 | case Matrix44f::ORTHOGONAL: return state1; |
---|
598 | case Matrix44f::NON_UNISCALE: return Matrix44f::XFORM_ERROR; |
---|
599 | case Matrix44f::AFFINE | Matrix44f::NON_UNISCALE: |
---|
600 | default: return state2; |
---|
601 | } |
---|
602 | case Matrix44f::AFFINE | Matrix44f::NON_UNISCALE: |
---|
603 | switch (state2) |
---|
604 | { |
---|
605 | case Matrix44f::IDENTITY: |
---|
606 | case Matrix44f::TRANS: |
---|
607 | case Matrix44f::ORTHOGONAL: |
---|
608 | case Matrix44f::AFFINE: return state1; |
---|
609 | case Matrix44f::NON_UNISCALE: return Matrix44f::XFORM_ERROR; |
---|
610 | default: return state2; |
---|
611 | } |
---|
612 | case Matrix44f::FULL: |
---|
613 | switch (state2) |
---|
614 | { |
---|
615 | case Matrix44f::XFORM_ERROR: return state2; |
---|
616 | case Matrix44f::NON_UNISCALE: return Matrix44f::XFORM_ERROR; |
---|
617 | default: return state1; |
---|
618 | } |
---|
619 | break; |
---|
620 | default: |
---|
621 | return Matrix44f::XFORM_ERROR; |
---|
622 | } |
---|
623 | } |
---|
624 | |
---|
625 | } // end namespace gmtl |
---|
626 | |
---|
627 | |
---|
628 | |
---|
629 | #endif |
---|