[4] | 1 | /************************************************************** ggt-head beg |
---|
| 2 | * |
---|
| 3 | * GGT: Generic Graphics Toolkit |
---|
| 4 | * |
---|
| 5 | * Original Authors: |
---|
| 6 | * Allen Bierbaum |
---|
| 7 | * |
---|
| 8 | * ----------------------------------------------------------------- |
---|
| 9 | * File: Math.h,v |
---|
| 10 | * Date modified: 2005/06/23 21:13:28 |
---|
| 11 | * Version: 1.40 |
---|
| 12 | * ----------------------------------------------------------------- |
---|
| 13 | * |
---|
| 14 | *********************************************************** ggt-head end */ |
---|
| 15 | /*************************************************************** ggt-cpr beg |
---|
| 16 | * |
---|
| 17 | * GGT: The Generic Graphics Toolkit |
---|
| 18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
| 19 | * |
---|
| 20 | * This library is free software; you can redistribute it and/or |
---|
| 21 | * modify it under the terms of the GNU Lesser General Public |
---|
| 22 | * License as published by the Free Software Foundation; either |
---|
| 23 | * version 2.1 of the License, or (at your option) any later version. |
---|
| 24 | * |
---|
| 25 | * This library is distributed in the hope that it will be useful, |
---|
| 26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
| 28 | * Lesser General Public License for more details. |
---|
| 29 | * |
---|
| 30 | * You should have received a copy of the GNU Lesser General Public |
---|
| 31 | * License along with this library; if not, write to the Free Software |
---|
| 32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
| 33 | * |
---|
| 34 | ************************************************************ ggt-cpr end */ |
---|
| 35 | #ifndef _GMTL_MATH_H_ |
---|
| 36 | #define _GMTL_MATH_H_ |
---|
| 37 | |
---|
| 38 | #include <math.h> |
---|
| 39 | #include <stdlib.h> |
---|
| 40 | #include <gmtl/Defines.h> |
---|
| 41 | #include <gmtl/Util/Assert.h> |
---|
| 42 | |
---|
| 43 | namespace gmtl |
---|
| 44 | { |
---|
| 45 | |
---|
| 46 | /** Base class for Rotation orders |
---|
| 47 | * @ingroup Defines |
---|
| 48 | * @see XYZ, ZYX, ZXY |
---|
| 49 | */ |
---|
| 50 | struct RotationOrderBase { enum { IS_ROTORDER = 1 }; }; |
---|
| 51 | |
---|
| 52 | /** XYZ Rotation order |
---|
| 53 | * @ingroup Defines */ |
---|
| 54 | struct XYZ : public RotationOrderBase { enum { ID = 0 }; }; |
---|
| 55 | |
---|
| 56 | /** ZYX Rotation order |
---|
| 57 | * @ingroup Defines */ |
---|
| 58 | struct ZYX : public RotationOrderBase { enum { ID = 1 }; }; |
---|
| 59 | |
---|
| 60 | /** ZXY Rotation order |
---|
| 61 | * @ingroup Defines */ |
---|
| 62 | struct ZXY : public RotationOrderBase { enum { ID = 2 }; }; |
---|
| 63 | |
---|
| 64 | namespace Math |
---|
| 65 | { |
---|
| 66 | /** @ingroup Math |
---|
| 67 | * @name Mathematical constants |
---|
| 68 | * @{ |
---|
| 69 | */ |
---|
| 70 | const float TWO_PI = 6.28318530717958647692f; |
---|
| 71 | const float PI = 3.14159265358979323846f; //3.14159265358979323846264338327950288419716939937510; |
---|
| 72 | const float PI_OVER_2 = 1.57079632679489661923f; |
---|
| 73 | const float PI_OVER_4 = 0.78539816339744830962f; |
---|
| 74 | /** @} */ |
---|
| 75 | |
---|
| 76 | /** @ingroup Math |
---|
| 77 | * @name C Math Abstraction |
---|
| 78 | * @{ |
---|
| 79 | */ |
---|
| 80 | //---------------------------------------------------------------------------- |
---|
| 81 | template <typename T> |
---|
| 82 | inline T abs( T iValue ) |
---|
| 83 | { |
---|
| 84 | return T( iValue >= ((T)0) ? iValue : -iValue ); |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | inline float abs(float iValue) |
---|
| 88 | { return fabsf(iValue); } |
---|
| 89 | inline double abs(double iValue) |
---|
| 90 | { return fabs(iValue); } |
---|
| 91 | inline int abs(int iValue) |
---|
| 92 | { return ::abs(iValue); } |
---|
| 93 | inline long abs(long iValue) |
---|
| 94 | { return labs(iValue); } |
---|
| 95 | |
---|
| 96 | //---------------------------------------------------------------------------- |
---|
| 97 | template <typename T> |
---|
| 98 | inline T ceil( T fValue ); |
---|
| 99 | inline float ceil( float fValue ) |
---|
| 100 | { |
---|
| 101 | #ifdef NO_CEILF |
---|
| 102 | return float(::ceil(fValue)); |
---|
| 103 | #else |
---|
| 104 | return float( ::ceilf( fValue ) ); |
---|
| 105 | #endif |
---|
| 106 | } |
---|
| 107 | inline double ceil( double fValue ) |
---|
| 108 | { |
---|
| 109 | return double( ::ceil( fValue ) ); |
---|
| 110 | } |
---|
| 111 | //---------------------------------------------------------------------------- |
---|
| 112 | template <typename T> |
---|
| 113 | inline T floor( T fValue ); // why do a floor of int? shouldn't compile... |
---|
| 114 | inline float floor( float fValue ) |
---|
| 115 | { |
---|
| 116 | #ifdef NO_FLOORF |
---|
| 117 | return float(::floor(fValue)); |
---|
| 118 | #else |
---|
| 119 | return float( ::floorf( fValue ) ); |
---|
| 120 | #endif |
---|
| 121 | } |
---|
| 122 | inline double floor( double fValue ) |
---|
| 123 | { |
---|
| 124 | return double( ::floor( fValue ) ); |
---|
| 125 | } |
---|
| 126 | //---------------------------------------------------------------------------- |
---|
| 127 | template <typename T> |
---|
| 128 | inline int sign( T iValue ) |
---|
| 129 | { |
---|
| 130 | if (iValue > T(0)) |
---|
| 131 | { |
---|
| 132 | return 1; |
---|
| 133 | } |
---|
| 134 | else |
---|
| 135 | { |
---|
| 136 | if (iValue < T(0)) |
---|
| 137 | { |
---|
| 138 | return -1; |
---|
| 139 | } |
---|
| 140 | else |
---|
| 141 | { |
---|
| 142 | return 0; |
---|
| 143 | } |
---|
| 144 | } |
---|
| 145 | } |
---|
| 146 | //---------------------------------------------------------------------------- |
---|
| 147 | /** |
---|
| 148 | * Clamps the given value down to zero if it is within epsilon of zero. |
---|
| 149 | * |
---|
| 150 | * @param value the value to clamp |
---|
| 151 | * @param eps the epsilon tolerance or zero by default |
---|
| 152 | * |
---|
| 153 | * @return zero if the value is close to 0, the value otherwise |
---|
| 154 | */ |
---|
| 155 | template <typename T> |
---|
| 156 | inline T zeroClamp( T value, T eps = T(0) ) |
---|
| 157 | { |
---|
| 158 | return ( (gmtl::Math::abs(value) <= eps) ? T(0) : value ); |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | //---------------------------------------------------------------------------- |
---|
| 162 | // don't allow non-float types, because their ret val wont be correct |
---|
| 163 | // i.e. with int, the int retval will be rounded up or down. |
---|
| 164 | // we'd need a float retval to do it right, but we can't specialize by ret |
---|
| 165 | template <typename T> |
---|
| 166 | inline T aCos( T fValue ); |
---|
| 167 | inline float aCos( float fValue ) |
---|
| 168 | { |
---|
| 169 | if ( -1.0f < fValue ) |
---|
| 170 | { |
---|
| 171 | if ( fValue < 1.0f ) |
---|
| 172 | { |
---|
| 173 | #ifdef NO_ACOSF |
---|
| 174 | return float(::acos(fValue)); |
---|
| 175 | #else |
---|
| 176 | return float( ::acosf( fValue ) ); |
---|
| 177 | #endif |
---|
| 178 | } |
---|
| 179 | else |
---|
| 180 | return 0.0f; |
---|
| 181 | } |
---|
| 182 | else |
---|
| 183 | { |
---|
| 184 | return (float)gmtl::Math::PI; |
---|
| 185 | } |
---|
| 186 | } |
---|
| 187 | inline double aCos( double fValue ) |
---|
| 188 | { |
---|
| 189 | if ( -1.0 < fValue ) |
---|
| 190 | { |
---|
| 191 | if ( fValue < 1.0 ) |
---|
| 192 | return double( ::acos( fValue ) ); |
---|
| 193 | else |
---|
| 194 | return 0.0; |
---|
| 195 | } |
---|
| 196 | else |
---|
| 197 | { |
---|
| 198 | return (double)gmtl::Math::PI; |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | //---------------------------------------------------------------------------- |
---|
| 202 | template <typename T> |
---|
| 203 | inline T aSin( T fValue ); |
---|
| 204 | inline float aSin( float fValue ) |
---|
| 205 | { |
---|
| 206 | if ( -1.0f < fValue ) |
---|
| 207 | { |
---|
| 208 | if ( fValue < 1.0f ) |
---|
| 209 | { |
---|
| 210 | #ifdef NO_ASINF |
---|
| 211 | return float(::asin(fValue)); |
---|
| 212 | #else |
---|
| 213 | return float( ::asinf( fValue ) ); |
---|
| 214 | #endif |
---|
| 215 | } |
---|
| 216 | else |
---|
| 217 | return (float)-gmtl::Math::PI_OVER_2; |
---|
| 218 | } |
---|
| 219 | else |
---|
| 220 | { |
---|
| 221 | return (float)gmtl::Math::PI_OVER_2; |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | inline double aSin( double fValue ) |
---|
| 225 | { |
---|
| 226 | if ( -1.0 < fValue ) |
---|
| 227 | { |
---|
| 228 | if ( fValue < 1.0 ) |
---|
| 229 | return double( ::asin( fValue ) ); |
---|
| 230 | else |
---|
| 231 | return (double)-gmtl::Math::PI_OVER_2; |
---|
| 232 | } |
---|
| 233 | else |
---|
| 234 | { |
---|
| 235 | return (double)gmtl::Math::PI_OVER_2; |
---|
| 236 | } |
---|
| 237 | } |
---|
| 238 | //---------------------------------------------------------------------------- |
---|
| 239 | template <typename T> |
---|
| 240 | inline T aTan( T fValue ); |
---|
| 241 | inline double aTan( double fValue ) |
---|
| 242 | { |
---|
| 243 | return ::atan( fValue ); |
---|
| 244 | } |
---|
| 245 | inline float aTan( float fValue ) |
---|
| 246 | { |
---|
| 247 | #ifdef NO_TANF |
---|
| 248 | return float(::atan(fValue)); |
---|
| 249 | #else |
---|
| 250 | return float( ::atanf( fValue ) ); |
---|
| 251 | #endif |
---|
| 252 | } |
---|
| 253 | //---------------------------------------------------------------------------- |
---|
| 254 | template <typename T> |
---|
| 255 | inline T aTan2( T fY, T fX ); |
---|
| 256 | inline float aTan2( float fY, float fX ) |
---|
| 257 | { |
---|
| 258 | #ifdef NO_ATAN2F |
---|
| 259 | return float(::atan2(fY, fX)); |
---|
| 260 | #else |
---|
| 261 | return float( ::atan2f( fY, fX ) ); |
---|
| 262 | #endif |
---|
| 263 | } |
---|
| 264 | inline double aTan2( double fY, double fX ) |
---|
| 265 | { |
---|
| 266 | return double( ::atan2( fY, fX ) ); |
---|
| 267 | } |
---|
| 268 | //---------------------------------------------------------------------------- |
---|
| 269 | template <typename T> |
---|
| 270 | inline T cos( T fValue ); |
---|
| 271 | inline float cos( float fValue ) |
---|
| 272 | { |
---|
| 273 | #ifdef NO_COSF |
---|
| 274 | return float(::cos(fValue)); |
---|
| 275 | #else |
---|
| 276 | return float( ::cosf( fValue ) ); |
---|
| 277 | #endif |
---|
| 278 | } |
---|
| 279 | inline double cos( double fValue ) |
---|
| 280 | { |
---|
| 281 | return double( ::cos( fValue ) ); |
---|
| 282 | } |
---|
| 283 | //---------------------------------------------------------------------------- |
---|
| 284 | template <typename T> |
---|
| 285 | inline T exp( T fValue ); |
---|
| 286 | inline float exp( float fValue ) |
---|
| 287 | { |
---|
| 288 | #ifdef NO_EXPF |
---|
| 289 | return float(::exp(fValue)); |
---|
| 290 | #else |
---|
| 291 | return float( ::expf( fValue ) ); |
---|
| 292 | #endif |
---|
| 293 | } |
---|
| 294 | inline double exp( double fValue ) |
---|
| 295 | { |
---|
| 296 | return double( ::exp( fValue ) ); |
---|
| 297 | } |
---|
| 298 | //---------------------------------------------------------------------------- |
---|
| 299 | template <typename T> |
---|
| 300 | inline T log( T fValue ); |
---|
| 301 | inline double log( double fValue ) |
---|
| 302 | { |
---|
| 303 | return double( ::log( fValue ) ); |
---|
| 304 | } |
---|
| 305 | inline float log( float fValue ) |
---|
| 306 | { |
---|
| 307 | #ifdef NO_LOGF |
---|
| 308 | return float(::log(fValue)); |
---|
| 309 | #else |
---|
| 310 | return float( ::logf( fValue ) ); |
---|
| 311 | #endif |
---|
| 312 | } |
---|
| 313 | //---------------------------------------------------------------------------- |
---|
| 314 | inline double pow( double fBase, double fExponent) |
---|
| 315 | { |
---|
| 316 | return double( ::pow( fBase, fExponent ) ); |
---|
| 317 | } |
---|
| 318 | inline float pow( float fBase, float fExponent) |
---|
| 319 | { |
---|
| 320 | #ifdef NO_POWF |
---|
| 321 | return float(::pow(fBase, fExponent)); |
---|
| 322 | #else |
---|
| 323 | return float( ::powf( fBase, fExponent ) ); |
---|
| 324 | #endif |
---|
| 325 | } |
---|
| 326 | //---------------------------------------------------------------------------- |
---|
| 327 | template <typename T> |
---|
| 328 | inline T sin( T fValue ); |
---|
| 329 | inline double sin( double fValue ) |
---|
| 330 | { |
---|
| 331 | return double( ::sin( fValue ) ); |
---|
| 332 | } |
---|
| 333 | inline float sin( float fValue ) |
---|
| 334 | { |
---|
| 335 | #ifdef NO_SINF |
---|
| 336 | return float(::sin(fValue)); |
---|
| 337 | #else |
---|
| 338 | return float( ::sinf( fValue ) ); |
---|
| 339 | #endif |
---|
| 340 | } |
---|
| 341 | //---------------------------------------------------------------------------- |
---|
| 342 | template <typename T> |
---|
| 343 | inline T tan( T fValue ); |
---|
| 344 | inline double tan( double fValue ) |
---|
| 345 | { |
---|
| 346 | return double( ::tan( fValue ) ); |
---|
| 347 | } |
---|
| 348 | inline float tan( float fValue ) |
---|
| 349 | { |
---|
| 350 | #ifdef NO_TANF |
---|
| 351 | return float(::tan(fValue)); |
---|
| 352 | #else |
---|
| 353 | return float( ::tanf( fValue ) ); |
---|
| 354 | #endif |
---|
| 355 | } |
---|
| 356 | //---------------------------------------------------------------------------- |
---|
| 357 | template <typename T> |
---|
| 358 | inline T sqr( T fValue ) |
---|
| 359 | { |
---|
| 360 | return T( fValue * fValue ); |
---|
| 361 | } |
---|
| 362 | //---------------------------------------------------------------------------- |
---|
| 363 | template <typename T> |
---|
| 364 | inline T sqrt( T fValue ) |
---|
| 365 | { |
---|
| 366 | #ifdef NO_SQRTF |
---|
| 367 | return T(::sqrt(((float)fValue))); |
---|
| 368 | #else |
---|
| 369 | return T( ::sqrtf( ((float)fValue) ) ); |
---|
| 370 | #endif |
---|
| 371 | } |
---|
| 372 | inline double sqrt( double fValue ) |
---|
| 373 | { |
---|
| 374 | return double( ::sqrt( fValue ) ); |
---|
| 375 | } |
---|
| 376 | |
---|
| 377 | /** Fast inverse square root. |
---|
| 378 | */ |
---|
| 379 | inline float fastInvSqrt(float x) |
---|
| 380 | { |
---|
| 381 | const float xhalf(0.5f*x); |
---|
| 382 | long i = *(long*)&x; |
---|
| 383 | i = 0x5f3759df - (i>>1); // This hides a good amount of math |
---|
| 384 | x = *(float*)&i; |
---|
| 385 | x = x*(1.5f - xhalf*x*x); // Repeat for more accuracy |
---|
| 386 | return x; |
---|
| 387 | } |
---|
| 388 | |
---|
| 389 | inline float fastInvSqrt2(float x) |
---|
| 390 | { |
---|
| 391 | const float xhalf(0.5f*x); |
---|
| 392 | long i = *(long*)&x; |
---|
| 393 | i = 0x5f3759df - (i>>1); // This hides a good amount of math |
---|
| 394 | x = *(float*)&i; |
---|
| 395 | x = x*(1.5f - xhalf*x*x); // Repeat for more accuracy |
---|
| 396 | x = x*(1.5f - xhalf*x*x); |
---|
| 397 | return x; |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | inline float fastInvSqrt3(float x) |
---|
| 401 | { |
---|
| 402 | const float xhalf(0.5f*x); |
---|
| 403 | long i = *(long*)&x; |
---|
| 404 | i = 0x5f3759df - (i>>1); // This hides a good amount of math |
---|
| 405 | x = *(float*)&i; |
---|
| 406 | x = x*(1.5f - xhalf*x*x); // Repeat for more accuracy |
---|
| 407 | x = x*(1.5f - xhalf*x*x); |
---|
| 408 | x = x*(1.5f - xhalf*x*x); |
---|
| 409 | return x; |
---|
| 410 | } |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | //---------------------------------------------------------------------------- |
---|
| 414 | /** |
---|
| 415 | * Seeds the pseudorandom number generator with the given seed. |
---|
| 416 | * |
---|
| 417 | * @param seed the seed for the pseudorandom number generator. |
---|
| 418 | */ |
---|
| 419 | inline void seedRandom(unsigned int seed) |
---|
| 420 | { |
---|
| 421 | ::srand(seed); |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | /** get a random number between 0 and 1 |
---|
| 425 | * @post returns number between 0 and 1 |
---|
| 426 | */ |
---|
| 427 | inline float unitRandom() |
---|
| 428 | { |
---|
| 429 | return float(::rand())/float(RAND_MAX); |
---|
| 430 | } |
---|
| 431 | |
---|
| 432 | /** return a random number between x1 and x2 |
---|
| 433 | * RETURNS: random number between x1 and x2 |
---|
| 434 | */ |
---|
| 435 | inline float rangeRandom( float x1, float x2 ) |
---|
| 436 | { |
---|
| 437 | float r = gmtl::Math::unitRandom(); |
---|
| 438 | float size = x2 - x1; |
---|
| 439 | return float( r * size + x1 ); |
---|
| 440 | } |
---|
| 441 | |
---|
| 442 | /* |
---|
| 443 | float SymmetricRandom () |
---|
| 444 | { |
---|
| 445 | return 2.0*float(rand())/float(RAND_MAX) - 1.0; |
---|
| 446 | } |
---|
| 447 | */ |
---|
| 448 | //---------------------------------------------------------------------------- |
---|
| 449 | |
---|
| 450 | inline float deg2Rad( float fVal ) |
---|
| 451 | { |
---|
| 452 | return float( fVal * (float)(gmtl::Math::PI/180.0) ); |
---|
| 453 | } |
---|
| 454 | inline double deg2Rad( double fVal ) |
---|
| 455 | { |
---|
| 456 | return double( fVal * (double)(gmtl::Math::PI/180.0) ); |
---|
| 457 | } |
---|
| 458 | |
---|
| 459 | inline float rad2Deg( float fVal ) |
---|
| 460 | { |
---|
| 461 | return float( fVal * (float)(180.0/gmtl::Math::PI) ); |
---|
| 462 | } |
---|
| 463 | inline double rad2Deg( double fVal ) |
---|
| 464 | { |
---|
| 465 | return double( fVal * (double)(180.0/gmtl::Math::PI) ); |
---|
| 466 | } |
---|
| 467 | //---------------------------------------------------------------------------- |
---|
| 468 | |
---|
| 469 | /** Is almost equal? |
---|
| 470 | * test for equality within some tolerance... |
---|
| 471 | * @PRE: tolerance must be >= 0 |
---|
| 472 | */ |
---|
| 473 | template <class T> |
---|
| 474 | inline bool isEqual( const T& a, const T& b, const T& tolerance ) |
---|
| 475 | { |
---|
| 476 | gmtlASSERT( tolerance >= (T)0 ); |
---|
| 477 | return bool( gmtl::Math::abs( a - b ) <= tolerance ); |
---|
| 478 | } |
---|
| 479 | //---------------------------------------------------------------------------- |
---|
| 480 | /** cut off the digits after the decimal place */ |
---|
| 481 | template <class T> |
---|
| 482 | inline T trunc( T val ) |
---|
| 483 | { |
---|
| 484 | return T( (val < ((T)0)) ? gmtl::Math::ceil( val ) : gmtl::Math::floor( val ) ); |
---|
| 485 | } |
---|
| 486 | /** round to nearest integer */ |
---|
| 487 | template <class T> |
---|
| 488 | inline T round( T p ) |
---|
| 489 | { |
---|
| 490 | return T( gmtl::Math::floor( p + (T)0.5 ) ); |
---|
| 491 | } |
---|
| 492 | //---------------------------------------------------------------------------- |
---|
| 493 | /** min returns the minimum of 2 values */ |
---|
| 494 | template <class T> |
---|
| 495 | inline T Min( const T& x, const T& y ) |
---|
| 496 | { |
---|
| 497 | return ( x > y ) ? y : x; |
---|
| 498 | } |
---|
| 499 | /** min returns the minimum of 3 values */ |
---|
| 500 | template <class T> |
---|
| 501 | inline T Min( const T& x, const T& y, const T& z ) |
---|
| 502 | { |
---|
| 503 | return Min( gmtl::Math::Min( x, y ), z ); |
---|
| 504 | } |
---|
| 505 | /** min returns the minimum of 4 values */ |
---|
| 506 | template <class T> |
---|
| 507 | inline T Min( const T& w, const T& x, const T& y, const T& z ) |
---|
| 508 | { |
---|
| 509 | return gmtl::Math::Min( gmtl::Math::Min( w, x ), gmtl::Math::Min( y, z ) ); |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | /** max returns the maximum of 2 values */ |
---|
| 513 | template <class T> |
---|
| 514 | inline T Max( const T& x, const T& y ) |
---|
| 515 | { |
---|
| 516 | return ( x > y ) ? x : y; |
---|
| 517 | } |
---|
| 518 | /** max returns the maximum of 3 values */ |
---|
| 519 | template <class T> |
---|
| 520 | inline T Max( const T& x, const T& y, const T& z ) |
---|
| 521 | { |
---|
| 522 | return Max( gmtl::Math::Max( x, y ), z ); |
---|
| 523 | } |
---|
| 524 | /** max returns the maximum of 4 values */ |
---|
| 525 | template <class T> |
---|
| 526 | inline T Max( const T& w, const T& x, const T& y, const T& z ) |
---|
| 527 | { |
---|
| 528 | return gmtl::Math::Max( gmtl::Math::Max( w, x ), gmtl::Math::Max( y, z ) ); |
---|
| 529 | } |
---|
| 530 | //---------------------------------------------------------------------------- |
---|
| 531 | /** Compute the factorial. |
---|
| 532 | * give - an object who's type has operator++, operator=, operator<=, and operator*= defined. |
---|
| 533 | * it should be a single valued scalar type such as an int, float, double etc.... |
---|
| 534 | * NOTE: This could be faster with a lookup table, but then wouldn't work templated : kevin |
---|
| 535 | */ |
---|
| 536 | template<class T> |
---|
| 537 | inline T factorial(T rhs) |
---|
| 538 | { |
---|
| 539 | T lhs = (T)1; |
---|
| 540 | |
---|
| 541 | for( T x = (T)1; x <= rhs; ++x ) |
---|
| 542 | { |
---|
| 543 | lhs *= x; |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | return lhs; |
---|
| 547 | } |
---|
| 548 | /** @} */ |
---|
| 549 | |
---|
| 550 | /** |
---|
| 551 | * clamp "number" to a range between lo and hi |
---|
| 552 | */ |
---|
| 553 | template <class T> |
---|
| 554 | inline T clamp( T number, T lo, T hi ) |
---|
| 555 | { |
---|
| 556 | if (number > hi) number = hi; |
---|
| 557 | else if (number < lo) number = lo; |
---|
| 558 | return number; |
---|
| 559 | } |
---|
| 560 | |
---|
| 561 | /** @ingroup Interp |
---|
| 562 | * @name Scalar type interpolation (for doubles, floats, etc...) |
---|
| 563 | * @{ |
---|
| 564 | */ |
---|
| 565 | |
---|
| 566 | /** Linear Interpolation between number [a] and [b]. |
---|
| 567 | * lerp=0.0 returns a, lerp=1.0 returns b |
---|
| 568 | * @pre use double or float only... |
---|
| 569 | */ |
---|
| 570 | template <class T, typename U> |
---|
| 571 | inline void lerp( T& result, const U& lerp, const T& a, const T& b ) |
---|
| 572 | { |
---|
| 573 | T size = b - a; |
---|
| 574 | result = ((U)a) + (((U)size) * lerp); |
---|
| 575 | } |
---|
| 576 | /** @} */ |
---|
| 577 | |
---|
| 578 | /** |
---|
| 579 | * Uses the quadratic formula to compute the 2 roots of the given 2nd degree |
---|
| 580 | * polynomial in the form of Ax^2 + Bx + C. |
---|
| 581 | * |
---|
| 582 | * @param r1 set to the first root |
---|
| 583 | * @param r2 set to the second root |
---|
| 584 | * @param a the coefficient to x^2 |
---|
| 585 | * @param b the coefficient to x^1 |
---|
| 586 | * @param c the coefficient to x^0 |
---|
| 587 | * |
---|
| 588 | * @return true if both r1 and r2 are real; false otherwise |
---|
| 589 | */ |
---|
| 590 | template <class T> |
---|
| 591 | inline bool quadraticFormula(T& r1, T& r2, const T& a, const T& b, const T& c) |
---|
| 592 | { |
---|
| 593 | const T q = b*b - T(4)*a*c; |
---|
| 594 | |
---|
| 595 | // the result has real roots |
---|
| 596 | if (q >= 0) |
---|
| 597 | { |
---|
| 598 | const T sq = gmtl::Math::sqrt(q); |
---|
| 599 | const T d = T(1) / (T(2) * a); |
---|
| 600 | r1 = (-b + sq) * d; |
---|
| 601 | r2 = (-b - sq) * d; |
---|
| 602 | return true; |
---|
| 603 | } |
---|
| 604 | // the result has complex roots |
---|
| 605 | else |
---|
| 606 | { |
---|
| 607 | return false; |
---|
| 608 | } |
---|
| 609 | } |
---|
| 610 | |
---|
| 611 | } // end namespace Math |
---|
| 612 | } // end namespace gmtl |
---|
| 613 | |
---|
| 614 | #endif |
---|