1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: Intersection.h,v |
---|
10 | * Date modified: 2006/06/08 21:11:59 |
---|
11 | * Version: 1.25 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | #ifndef _GMTL_INTERSECTION_H_ |
---|
36 | #define _GMTL_INTERSECTION_H_ |
---|
37 | |
---|
38 | #include <algorithm> |
---|
39 | #include <limits> |
---|
40 | #include <gmtl/AABox.h> |
---|
41 | #include <gmtl/Point.h> |
---|
42 | #include <gmtl/Sphere.h> |
---|
43 | #include <gmtl/Vec.h> |
---|
44 | #include <gmtl/Plane.h> |
---|
45 | #include <gmtl/VecOps.h> |
---|
46 | #include <gmtl/Math.h> |
---|
47 | #include <gmtl/Ray.h> |
---|
48 | #include <gmtl/LineSeg.h> |
---|
49 | #include <gmtl/Tri.h> |
---|
50 | #include <gmtl/PlaneOps.h> |
---|
51 | |
---|
52 | namespace gmtl |
---|
53 | { |
---|
54 | /** |
---|
55 | * Tests if the given AABoxes intersect with each other. Sharing an edge IS |
---|
56 | * considered intersection by this algorithm. |
---|
57 | * |
---|
58 | * @param box1 the first AA box to test |
---|
59 | * @param box2 the second AA box to test |
---|
60 | * |
---|
61 | * @return true if the boxes intersect; false otherwise |
---|
62 | */ |
---|
63 | template<class DATA_TYPE> |
---|
64 | bool intersect(const AABox<DATA_TYPE>& box1, const AABox<DATA_TYPE>& box2) |
---|
65 | { |
---|
66 | // Look for a separating axis on each box for each axis |
---|
67 | if (box1.getMin()[0] > box2.getMax()[0]) return false; |
---|
68 | if (box1.getMin()[1] > box2.getMax()[1]) return false; |
---|
69 | if (box1.getMin()[2] > box2.getMax()[2]) return false; |
---|
70 | |
---|
71 | if (box2.getMin()[0] > box1.getMax()[0]) return false; |
---|
72 | if (box2.getMin()[1] > box1.getMax()[1]) return false; |
---|
73 | if (box2.getMin()[2] > box1.getMax()[2]) return false; |
---|
74 | |
---|
75 | // No separating axis ... they must intersect |
---|
76 | return true; |
---|
77 | } |
---|
78 | |
---|
79 | /** |
---|
80 | * Tests if the given AABox and point intersect with each other. On an edge IS |
---|
81 | * considered intersection by this algorithm. |
---|
82 | * |
---|
83 | * @param box the box to test |
---|
84 | * @param point the point to test |
---|
85 | * |
---|
86 | * @return true if the point is within the box's bounds; false otherwise |
---|
87 | */ |
---|
88 | template<class DATA_TYPE> |
---|
89 | bool intersect( const AABox<DATA_TYPE>& box, const Point<DATA_TYPE, 3>& point ) |
---|
90 | { |
---|
91 | // Look for a separating axis on each box for each axis |
---|
92 | if (box.getMin()[0] > point[0]) return false; |
---|
93 | if (box.getMin()[1] > point[1]) return false; |
---|
94 | if (box.getMin()[2] > point[2]) return false; |
---|
95 | |
---|
96 | if (point[0] > box.getMax()[0]) return false; |
---|
97 | if (point[1] > box.getMax()[1]) return false; |
---|
98 | if (point[2] > box.getMax()[2]) return false; |
---|
99 | |
---|
100 | // they must intersect |
---|
101 | return true; |
---|
102 | } |
---|
103 | |
---|
104 | /** |
---|
105 | * Tests if the given AABoxes intersect if moved along the given paths. Using |
---|
106 | * the AABox sweep test, the normalized time of the first and last points of |
---|
107 | * contact are found. |
---|
108 | * |
---|
109 | * @param box1 the first box to test |
---|
110 | * @param path1 the path the first box should travel along |
---|
111 | * @param box2 the second box to test |
---|
112 | * @param path2 the path the second box should travel along |
---|
113 | * @param firstContact set to the normalized time of the first point of contact |
---|
114 | * @param secondContact set to the normalized time of the second point of contact |
---|
115 | * |
---|
116 | * @return true if the boxes intersect at any time; false otherwise |
---|
117 | */ |
---|
118 | template<class DATA_TYPE> |
---|
119 | bool intersect( const AABox<DATA_TYPE>& box1, const Vec<DATA_TYPE, 3>& path1, |
---|
120 | const AABox<DATA_TYPE>& box2, const Vec<DATA_TYPE, 3>& path2, |
---|
121 | DATA_TYPE& firstContact, DATA_TYPE& secondContact ) |
---|
122 | { |
---|
123 | // Algorithm taken from Gamasutra's article, "Simple Intersection Test for |
---|
124 | // Games" - http://www.gamasutra.com/features/19991018/Gomez_3.htm |
---|
125 | // |
---|
126 | // This algorithm is solved from the frame of reference of box1 |
---|
127 | |
---|
128 | // Get the relative path (in normalized time) |
---|
129 | Vec<DATA_TYPE, 3> path = path2 - path1; |
---|
130 | |
---|
131 | // The first time of overlap along each axis |
---|
132 | Vec<DATA_TYPE, 3> overlap1(DATA_TYPE(0), DATA_TYPE(0), DATA_TYPE(0)); |
---|
133 | |
---|
134 | // The second time of overlap along each axis |
---|
135 | Vec<DATA_TYPE, 3> overlap2(DATA_TYPE(1), DATA_TYPE(1), DATA_TYPE(1)); |
---|
136 | |
---|
137 | // Check if the boxes already overlap |
---|
138 | if (gmtl::intersect(box1, box2)) |
---|
139 | { |
---|
140 | firstContact = secondContact = DATA_TYPE(0); |
---|
141 | return true; |
---|
142 | } |
---|
143 | |
---|
144 | // Find the possible first and last times of overlap along each axis |
---|
145 | for (int i=0; i<3; ++i) |
---|
146 | { |
---|
147 | if ((box1.getMax()[i] < box2.getMin()[i]) && (path[i] < DATA_TYPE(0))) |
---|
148 | { |
---|
149 | overlap1[i] = (box1.getMax()[i] - box2.getMin()[i]) / path[i]; |
---|
150 | } |
---|
151 | else if ((box2.getMax()[i] < box1.getMin()[i]) && (path[i] > DATA_TYPE(0))) |
---|
152 | { |
---|
153 | overlap1[i] = (box1.getMin()[i] - box2.getMax()[i]) / path[i]; |
---|
154 | } |
---|
155 | |
---|
156 | if ((box2.getMax()[i] > box1.getMin()[i]) && (path[i] < DATA_TYPE(0))) |
---|
157 | { |
---|
158 | overlap2[i] = (box1.getMin()[i] - box2.getMax()[i]) / path[i]; |
---|
159 | } |
---|
160 | else if ((box1.getMax()[i] > box2.getMin()[i]) && (path[i] > DATA_TYPE(0))) |
---|
161 | { |
---|
162 | overlap2[i] = (box1.getMax()[i] - box2.getMin()[i]) / path[i]; |
---|
163 | } |
---|
164 | } |
---|
165 | |
---|
166 | // Calculate the first time of overlap |
---|
167 | firstContact = Math::Max(overlap1[0], overlap1[1], overlap1[2]); |
---|
168 | |
---|
169 | // Calculate the second time of overlap |
---|
170 | secondContact = Math::Min(overlap2[0], overlap2[1], overlap2[2]); |
---|
171 | |
---|
172 | // There could only have been a collision if the first overlap time |
---|
173 | // occurred before the second overlap time |
---|
174 | return firstContact <= secondContact; |
---|
175 | } |
---|
176 | |
---|
177 | /** |
---|
178 | * Given an axis-aligned bounding box and a ray (or subclass thereof), |
---|
179 | * returns whether the ray intersects the box, and if so, \p tIn and |
---|
180 | * \p tOut are set to the parametric terms on the ray where the segment |
---|
181 | * enters and exits the box respectively. |
---|
182 | * |
---|
183 | * The implementation of this function comes from the book |
---|
184 | * <i>Geometric Tools for Computer Graphics</i>, pages 626-630. |
---|
185 | * |
---|
186 | * @note Internal function for performing an intersection test between an |
---|
187 | * axis-aligned bounding box and a ray. User code should not call this |
---|
188 | * function directly. It is used to capture the common code between |
---|
189 | * the gmtl::Ray<T> and gmtl::LineSeg<T> overloads of |
---|
190 | * gmtl::intersect() when intersecting with a gmtl::AABox<T>. |
---|
191 | */ |
---|
192 | template<class DATA_TYPE> |
---|
193 | bool intersectAABoxRay(const AABox<DATA_TYPE>& box, |
---|
194 | const Ray<DATA_TYPE>& ray, DATA_TYPE& tIn, |
---|
195 | DATA_TYPE& tOut) |
---|
196 | { |
---|
197 | tIn = -std::numeric_limits<DATA_TYPE>::max(); |
---|
198 | tOut = std::numeric_limits<DATA_TYPE>::max(); |
---|
199 | DATA_TYPE t0, t1; |
---|
200 | const DATA_TYPE epsilon(0.0000001); |
---|
201 | |
---|
202 | // YZ plane. |
---|
203 | if ( gmtl::Math::abs(ray.mDir[0]) < epsilon ) |
---|
204 | { |
---|
205 | // Ray parallel to plane. |
---|
206 | if ( ray.mOrigin[0] < box.mMin[0] || ray.mOrigin[0] > box.mMax[0] ) |
---|
207 | { |
---|
208 | return false; |
---|
209 | } |
---|
210 | } |
---|
211 | |
---|
212 | // XZ plane. |
---|
213 | if ( gmtl::Math::abs(ray.mDir[1]) < epsilon ) |
---|
214 | { |
---|
215 | // Ray parallel to plane. |
---|
216 | if ( ray.mOrigin[1] < box.mMin[1] || ray.mOrigin[1] > box.mMax[1] ) |
---|
217 | { |
---|
218 | return false; |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | // XY plane. |
---|
223 | if ( gmtl::Math::abs(ray.mDir[2]) < epsilon ) |
---|
224 | { |
---|
225 | // Ray parallel to plane. |
---|
226 | if ( ray.mOrigin[2] < box.mMin[2] || ray.mOrigin[2] > box.mMax[2] ) |
---|
227 | { |
---|
228 | return false; |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | // YZ plane. |
---|
233 | t0 = (box.mMin[0] - ray.mOrigin[0]) / ray.mDir[0]; |
---|
234 | t1 = (box.mMax[0] - ray.mOrigin[0]) / ray.mDir[0]; |
---|
235 | |
---|
236 | if ( t0 > t1 ) |
---|
237 | { |
---|
238 | std::swap(t0, t1); |
---|
239 | } |
---|
240 | |
---|
241 | if ( t0 > tIn ) |
---|
242 | { |
---|
243 | tIn = t0; |
---|
244 | } |
---|
245 | if ( t1 < tOut ) |
---|
246 | { |
---|
247 | tOut = t1; |
---|
248 | } |
---|
249 | |
---|
250 | if ( tIn > tOut || tOut < DATA_TYPE(0) ) |
---|
251 | { |
---|
252 | return false; |
---|
253 | } |
---|
254 | |
---|
255 | // XZ plane. |
---|
256 | t0 = (box.mMin[1] - ray.mOrigin[1]) / ray.mDir[1]; |
---|
257 | t1 = (box.mMax[1] - ray.mOrigin[1]) / ray.mDir[1]; |
---|
258 | |
---|
259 | if ( t0 > t1 ) |
---|
260 | { |
---|
261 | std::swap(t0, t1); |
---|
262 | } |
---|
263 | |
---|
264 | if ( t0 > tIn ) |
---|
265 | { |
---|
266 | tIn = t0; |
---|
267 | } |
---|
268 | if ( t1 < tOut ) |
---|
269 | { |
---|
270 | tOut = t1; |
---|
271 | } |
---|
272 | |
---|
273 | if ( tIn > tOut || tOut < DATA_TYPE(0) ) |
---|
274 | { |
---|
275 | return false; |
---|
276 | } |
---|
277 | |
---|
278 | // XY plane. |
---|
279 | t0 = (box.mMin[2] - ray.mOrigin[2]) / ray.mDir[2]; |
---|
280 | t1 = (box.mMax[2] - ray.mOrigin[2]) / ray.mDir[2]; |
---|
281 | |
---|
282 | if ( t0 > t1 ) |
---|
283 | { |
---|
284 | std::swap(t0, t1); |
---|
285 | } |
---|
286 | |
---|
287 | if ( t0 > tIn ) |
---|
288 | { |
---|
289 | tIn = t0; |
---|
290 | } |
---|
291 | if ( t1 < tOut ) |
---|
292 | { |
---|
293 | tOut = t1; |
---|
294 | } |
---|
295 | |
---|
296 | if ( tIn > tOut || tOut < DATA_TYPE(0) ) |
---|
297 | { |
---|
298 | return false; |
---|
299 | } |
---|
300 | |
---|
301 | return true; |
---|
302 | } |
---|
303 | |
---|
304 | /** |
---|
305 | * Given a line segment and an axis-aligned bounding box, returns whether |
---|
306 | * the line intersects the box, and if so, \p tIn and \p tOut are set to |
---|
307 | * the parametric terms on the line segment where the segment enters and |
---|
308 | * exits the box respectively. |
---|
309 | * |
---|
310 | * @since 0.4.11 |
---|
311 | */ |
---|
312 | template<class DATA_TYPE> |
---|
313 | bool intersect(const AABox<DATA_TYPE>& box, const LineSeg<DATA_TYPE>& seg, |
---|
314 | unsigned int& numHits, DATA_TYPE& tIn, DATA_TYPE& tOut) |
---|
315 | { |
---|
316 | numHits = 0; |
---|
317 | bool result = intersectAABoxRay(box, seg, tIn, tOut); |
---|
318 | |
---|
319 | if ( result ) |
---|
320 | { |
---|
321 | // If tIn is less than 0, then the origin of the line segment is |
---|
322 | // inside the bounding box (not on an edge)but the endpoint is |
---|
323 | // outside. |
---|
324 | if ( tIn < DATA_TYPE(0) ) |
---|
325 | { |
---|
326 | numHits = 1; |
---|
327 | tIn = tOut; |
---|
328 | } |
---|
329 | // If tIn is less than 0, then the origin of the line segment is |
---|
330 | // outside the bounding box but the endpoint is inside (not on an |
---|
331 | // edge). |
---|
332 | else if ( tOut > DATA_TYPE(1) ) |
---|
333 | { |
---|
334 | numHits = 1; |
---|
335 | tOut = tIn; |
---|
336 | } |
---|
337 | // Otherwise, the line segement intersects the bounding box in two |
---|
338 | // places. tIn and tOut reflect those points of intersection. |
---|
339 | else |
---|
340 | { |
---|
341 | numHits = 2; |
---|
342 | } |
---|
343 | } |
---|
344 | |
---|
345 | return result; |
---|
346 | } |
---|
347 | |
---|
348 | /** |
---|
349 | * Given a line segment and an axis-aligned bounding box, returns whether |
---|
350 | * the line intersects the box, and if so, \p tIn and \p tOut are set to |
---|
351 | * the parametric terms on the line segment where the segment enters and |
---|
352 | * exits the box respectively. |
---|
353 | * |
---|
354 | * @since 0.4.11 |
---|
355 | */ |
---|
356 | template<class DATA_TYPE> |
---|
357 | bool intersect(const LineSeg<DATA_TYPE>& seg, const AABox<DATA_TYPE>& box, |
---|
358 | unsigned int& numHits, DATA_TYPE& tIn, DATA_TYPE& tOut) |
---|
359 | { |
---|
360 | return intersect(box, seg, numHits, tIn, tOut); |
---|
361 | } |
---|
362 | |
---|
363 | /** |
---|
364 | * Given a ray and an axis-aligned bounding box, returns whether the ray |
---|
365 | * intersects the box, and if so, \p tIn and \p tOut are set to the |
---|
366 | * parametric terms on the ray where it enters and exits the box |
---|
367 | * respectively. |
---|
368 | * |
---|
369 | * @since 0.4.11 |
---|
370 | */ |
---|
371 | template<class DATA_TYPE> |
---|
372 | bool intersect(const AABox<DATA_TYPE>& box, const Ray<DATA_TYPE>& ray, |
---|
373 | unsigned int& numHits, DATA_TYPE& tIn, DATA_TYPE& tOut) |
---|
374 | { |
---|
375 | numHits = 0; |
---|
376 | |
---|
377 | bool result = intersectAABoxRay(box, ray, tIn, tOut); |
---|
378 | |
---|
379 | if ( result ) |
---|
380 | { |
---|
381 | // Ray is inside the box. |
---|
382 | if ( tIn < DATA_TYPE(0) ) |
---|
383 | { |
---|
384 | tIn = tOut; |
---|
385 | numHits = 1; |
---|
386 | } |
---|
387 | else |
---|
388 | { |
---|
389 | numHits = 2; |
---|
390 | } |
---|
391 | } |
---|
392 | |
---|
393 | return result; |
---|
394 | } |
---|
395 | |
---|
396 | /** |
---|
397 | * Given a ray and an axis-aligned bounding box, returns whether the ray |
---|
398 | * intersects the box, and if so, \p tIn and \p tOut are set to the |
---|
399 | * parametric terms on the ray where it enters and exits the box |
---|
400 | * respectively. |
---|
401 | * |
---|
402 | * @since 0.4.11 |
---|
403 | */ |
---|
404 | template<class DATA_TYPE> |
---|
405 | bool intersect(const Ray<DATA_TYPE>& ray, const AABox<DATA_TYPE>& box, |
---|
406 | unsigned int& numHits, DATA_TYPE& tIn, DATA_TYPE& tOut) |
---|
407 | { |
---|
408 | return intersect(box, ray, numHits, tIn, tOut); |
---|
409 | } |
---|
410 | |
---|
411 | /** |
---|
412 | * Tests if the given Spheres intersect if moved along the given paths. Using |
---|
413 | * the Sphere sweep test, the normalized time of the first and last points of |
---|
414 | * contact are found. |
---|
415 | * |
---|
416 | * @param sph1 the first sphere to test |
---|
417 | * @param path1 the path the first sphere should travel along |
---|
418 | * @param sph2 the second sphere to test |
---|
419 | * @param path2 the path the second sphere should travel along |
---|
420 | * @param firstContact set to the normalized time of the first point of contact |
---|
421 | * @param secondContact set to the normalized time of the second point of contact |
---|
422 | * |
---|
423 | * @return true if the spheres intersect; false otherwise |
---|
424 | */ |
---|
425 | template<class DATA_TYPE> |
---|
426 | bool intersect(const Sphere<DATA_TYPE>& sph1, const Vec<DATA_TYPE, 3>& path1, |
---|
427 | const Sphere<DATA_TYPE>& sph2, const Vec<DATA_TYPE, 3>& path2, |
---|
428 | DATA_TYPE& firstContact, DATA_TYPE& secondContact) |
---|
429 | { |
---|
430 | // Algorithm taken from Gamasutra's article, "Simple Intersection Test for |
---|
431 | // Games" - http://www.gamasutra.com/features/19991018/Gomez_2.htm |
---|
432 | // |
---|
433 | // This algorithm is solved from the frame of reference of sph1 |
---|
434 | |
---|
435 | // Get the relative path (in normalized time) |
---|
436 | const Vec<DATA_TYPE, 3> path = path2 - path1; |
---|
437 | |
---|
438 | // Get the vector from sph1's starting point to sph2's starting point |
---|
439 | const Vec<DATA_TYPE, 3> start_offset = sph2.getCenter() - sph1.getCenter(); |
---|
440 | |
---|
441 | // Compute the sum of the radii |
---|
442 | const DATA_TYPE radius_sum = sph1.getRadius() + sph2.getRadius(); |
---|
443 | |
---|
444 | // u*u coefficient |
---|
445 | const DATA_TYPE a = dot(path, path); |
---|
446 | |
---|
447 | // u coefficient |
---|
448 | const DATA_TYPE b = DATA_TYPE(2) * dot(path, start_offset); |
---|
449 | |
---|
450 | // constant term |
---|
451 | const DATA_TYPE c = dot(start_offset, start_offset) - radius_sum * radius_sum; |
---|
452 | |
---|
453 | // Check if they're already overlapping |
---|
454 | if (dot(start_offset, start_offset) <= radius_sum * radius_sum) |
---|
455 | { |
---|
456 | firstContact = secondContact = DATA_TYPE(0); |
---|
457 | return true; |
---|
458 | } |
---|
459 | |
---|
460 | // Find the first and last points of intersection |
---|
461 | if (Math::quadraticFormula(firstContact, secondContact, a, b, c)) |
---|
462 | { |
---|
463 | // Swap first and second contacts if necessary |
---|
464 | if (firstContact > secondContact) |
---|
465 | { |
---|
466 | std::swap(firstContact, secondContact); |
---|
467 | return true; |
---|
468 | } |
---|
469 | } |
---|
470 | |
---|
471 | return false; |
---|
472 | } |
---|
473 | |
---|
474 | /** |
---|
475 | * Tests if the given AABox and Sphere intersect with each other. On an edge |
---|
476 | * IS considered intersection by this algorithm. |
---|
477 | * |
---|
478 | * @param box the box to test |
---|
479 | * @param sph the sphere to test |
---|
480 | * |
---|
481 | * @return true if the items intersect; false otherwise |
---|
482 | */ |
---|
483 | template<class DATA_TYPE> |
---|
484 | bool intersect(const AABox<DATA_TYPE>& box, const Sphere<DATA_TYPE>& sph) |
---|
485 | { |
---|
486 | DATA_TYPE dist_sqr = DATA_TYPE(0); |
---|
487 | |
---|
488 | // Compute the square of the distance from the sphere to the box |
---|
489 | for (int i=0; i<3; ++i) |
---|
490 | { |
---|
491 | if (sph.getCenter()[i] < box.getMin()[i]) |
---|
492 | { |
---|
493 | DATA_TYPE s = sph.getCenter()[i] - box.getMin()[i]; |
---|
494 | dist_sqr += s*s; |
---|
495 | } |
---|
496 | else if (sph.getCenter()[i] > box.getMax()[i]) |
---|
497 | { |
---|
498 | DATA_TYPE s = sph.getCenter()[i] - box.getMax()[i]; |
---|
499 | dist_sqr += s*s; |
---|
500 | } |
---|
501 | } |
---|
502 | |
---|
503 | return dist_sqr <= (sph.getRadius()*sph.getRadius()); |
---|
504 | } |
---|
505 | |
---|
506 | /** |
---|
507 | * Tests if the given AABox and Sphere intersect with each other. On an edge |
---|
508 | * IS considered intersection by this algorithm. |
---|
509 | * |
---|
510 | * @param sph the sphere to test |
---|
511 | * @param box the box to test |
---|
512 | * |
---|
513 | * @return true if the items intersect; false otherwise |
---|
514 | */ |
---|
515 | template<class DATA_TYPE> |
---|
516 | bool intersect(const Sphere<DATA_TYPE>& sph, const AABox<DATA_TYPE>& box) |
---|
517 | { |
---|
518 | return gmtl::intersect(box, sph); |
---|
519 | } |
---|
520 | |
---|
521 | /** |
---|
522 | * intersect point/sphere. |
---|
523 | * @param point the point to test |
---|
524 | * @param sphere the sphere to test |
---|
525 | * @return true if point is in or on sphere |
---|
526 | */ |
---|
527 | template<class DATA_TYPE> |
---|
528 | bool intersect( const Sphere<DATA_TYPE>& sphere, const Point<DATA_TYPE, 3>& point ) |
---|
529 | { |
---|
530 | gmtl::Vec<DATA_TYPE, 3> offset = point - sphere.getCenter(); |
---|
531 | DATA_TYPE dist = lengthSquared( offset ) - sphere.getRadius() * sphere.getRadius(); |
---|
532 | |
---|
533 | // point is inside the sphere when true |
---|
534 | return dist <= 0; |
---|
535 | } |
---|
536 | |
---|
537 | /** |
---|
538 | * intersect ray/sphere-shell (not volume). |
---|
539 | * only register hits with the surface of the sphere. |
---|
540 | * note: after calling this, you can find the intersection point with: ray.getOrigin() + ray.getDir() * t |
---|
541 | * |
---|
542 | * @param ray the ray to test |
---|
543 | * @param sphere the sphere to test |
---|
544 | * @return returns intersection point in t, and the number of hits |
---|
545 | * @return numhits, t0, t1 are undefined if return value is false |
---|
546 | */ |
---|
547 | template<typename T> |
---|
548 | inline bool intersect( const Sphere<T>& sphere, const Ray<T>& ray, int& numhits, float& t0, float& t1 ) |
---|
549 | { |
---|
550 | numhits = -1; |
---|
551 | |
---|
552 | // set up quadratic Q(t) = a*t^2 + 2*b*t + c |
---|
553 | const Vec<T, 3> offset = ray.getOrigin() - sphere.getCenter(); |
---|
554 | const T a = lengthSquared( ray.getDir() ); |
---|
555 | const T b = dot( offset, ray.getDir() ); |
---|
556 | const T c = lengthSquared( offset ) - sphere.getRadius() * sphere.getRadius(); |
---|
557 | |
---|
558 | |
---|
559 | |
---|
560 | // no intersection if Q(t) has no real roots |
---|
561 | const T discriminant = b * b - a * c; |
---|
562 | if (discriminant < 0.0f) |
---|
563 | { |
---|
564 | numhits = 0; |
---|
565 | return false; |
---|
566 | } |
---|
567 | else if (discriminant > 0.0f) |
---|
568 | { |
---|
569 | T root = Math::sqrt( discriminant ); |
---|
570 | T invA = T(1) / a; |
---|
571 | t0 = (-b - root) * invA; |
---|
572 | t1 = (-b + root) * invA; |
---|
573 | |
---|
574 | // assert: t0 < t1 since A > 0 |
---|
575 | |
---|
576 | if (t0 >= T(0)) |
---|
577 | { |
---|
578 | numhits = 2; |
---|
579 | return true; |
---|
580 | } |
---|
581 | else if (t1 >= T(0)) |
---|
582 | { |
---|
583 | numhits = 1; |
---|
584 | t0 = t1; |
---|
585 | return true; |
---|
586 | } |
---|
587 | else |
---|
588 | { |
---|
589 | numhits = 0; |
---|
590 | return false; |
---|
591 | } |
---|
592 | } |
---|
593 | else |
---|
594 | { |
---|
595 | t0 = -b / a; |
---|
596 | if (t0 >= T(0)) |
---|
597 | { |
---|
598 | numhits = 1; |
---|
599 | return true; |
---|
600 | } |
---|
601 | else |
---|
602 | { |
---|
603 | numhits = 0; |
---|
604 | return false; |
---|
605 | } |
---|
606 | } |
---|
607 | } |
---|
608 | |
---|
609 | /** intersect LineSeg/Sphere-shell (not volume). |
---|
610 | * does intersection on sphere surface, point inside sphere doesn't count as an intersection |
---|
611 | * returns intersection point(s) in t |
---|
612 | * find intersection point(s) with: ray.getOrigin() + ray.getDir() * t |
---|
613 | * numhits, t0, t1 are undefined if return value is false |
---|
614 | */ |
---|
615 | template<typename T> |
---|
616 | inline bool intersect( const Sphere<T>& sphere, const LineSeg<T>& lineseg, int& numhits, float& t0, float& t1 ) |
---|
617 | { |
---|
618 | if (intersect( sphere, Ray<T>( lineseg ), numhits, t0, t1 )) |
---|
619 | { |
---|
620 | // throw out hits that are past 1 in segspace (off the end of the lineseg) |
---|
621 | while (0 < numhits && 1.0f < t0) |
---|
622 | { |
---|
623 | --numhits; |
---|
624 | t0 = t1; |
---|
625 | } |
---|
626 | if (2 == numhits && 1.0f < t1) |
---|
627 | { |
---|
628 | --numhits; |
---|
629 | } |
---|
630 | return 0 < numhits; |
---|
631 | } |
---|
632 | else |
---|
633 | { |
---|
634 | return false; |
---|
635 | } |
---|
636 | } |
---|
637 | |
---|
638 | /** |
---|
639 | * intersect lineseg/sphere-volume. |
---|
640 | * register hits with both the surface and when end points land on the interior of the sphere. |
---|
641 | * note: after calling this, you can find the intersection point with: ray.getOrigin() + ray.getDir() * t |
---|
642 | * |
---|
643 | * @param ray the lineseg to test |
---|
644 | * @param sphere the sphere to test |
---|
645 | * @return returns intersection point in t, and the number of hits |
---|
646 | * @return numhits, t0, t1 are undefined if return value is false |
---|
647 | */ |
---|
648 | template<typename T> |
---|
649 | inline bool intersectVolume( const Sphere<T>& sphere, const LineSeg<T>& ray, int& numhits, float& t0, float& t1 ) |
---|
650 | { |
---|
651 | bool result = intersect( sphere, ray, numhits, t0, t1 ); |
---|
652 | if (result && numhits == 2) |
---|
653 | { |
---|
654 | return true; |
---|
655 | } |
---|
656 | // todo: make this faster (find an early out) since 1 or 0 hits is the common case. |
---|
657 | // volume test has some additional checks before we can throw it out because |
---|
658 | // one of both points may be inside the volume, so we want to return hits for those as well... |
---|
659 | else // 1 or 0 hits. |
---|
660 | { |
---|
661 | const T rsq = sphere.getRadius() * sphere.getRadius(); |
---|
662 | const Vec<T, 3> dist = ray.getOrigin() - sphere.getCenter(); |
---|
663 | const T a = lengthSquared( dist ) - rsq; |
---|
664 | const T b = lengthSquared( gmtl::Vec<T,3>(dist + ray.getDir()) ) - rsq; |
---|
665 | |
---|
666 | bool inside1 = a <= T( 0 ); |
---|
667 | bool inside2 = b <= T( 0 ); |
---|
668 | |
---|
669 | // one point is inside |
---|
670 | if (numhits == 1 && inside1 && !inside2) |
---|
671 | { |
---|
672 | t1 = t0; |
---|
673 | t0 = T(0); |
---|
674 | numhits = 2; |
---|
675 | return true; |
---|
676 | } |
---|
677 | else if (numhits == 1 && !inside1 && inside2) |
---|
678 | { |
---|
679 | t1 = T(1); |
---|
680 | numhits = 2; |
---|
681 | return true; |
---|
682 | } |
---|
683 | // maybe both points are inside? |
---|
684 | else if (inside1 && inside2) // 0 hits. |
---|
685 | { |
---|
686 | t0 = T(0); |
---|
687 | t1 = T(1); |
---|
688 | numhits = 2; |
---|
689 | return true; |
---|
690 | } |
---|
691 | } |
---|
692 | return result; |
---|
693 | } |
---|
694 | |
---|
695 | /** |
---|
696 | * intersect ray/sphere-volume. |
---|
697 | * register hits with both the surface and when the origin lands in the interior of the sphere. |
---|
698 | * note: after calling this, you can find the intersection point with: ray.getOrigin() + ray.getDir() * t |
---|
699 | * |
---|
700 | * @param ray the ray to test |
---|
701 | * @param sphere the sphere to test |
---|
702 | * @return returns intersection point in t, and the number of hits |
---|
703 | * @return numhits, t0, t1 are undefined if return value is false |
---|
704 | */ |
---|
705 | template<typename T> |
---|
706 | inline bool intersectVolume( const Sphere<T>& sphere, const Ray<T>& ray, int& numhits, float& t0, float& t1 ) |
---|
707 | { |
---|
708 | bool result = intersect( sphere, ray, numhits, t0, t1 ); |
---|
709 | if (result && numhits == 2) |
---|
710 | { |
---|
711 | return true; |
---|
712 | } |
---|
713 | else |
---|
714 | { |
---|
715 | const T rsq = sphere.getRadius() * sphere.getRadius(); |
---|
716 | const Vec<T, 3> dist = ray.getOrigin() - sphere.getCenter(); |
---|
717 | const T a = lengthSquared( dist ) - rsq; |
---|
718 | |
---|
719 | bool inside = a <= T( 0 ); |
---|
720 | |
---|
721 | // start point is inside |
---|
722 | if (inside) |
---|
723 | { |
---|
724 | t1 = t0; |
---|
725 | t0 = T(0); |
---|
726 | numhits = 2; |
---|
727 | return true; |
---|
728 | } |
---|
729 | } |
---|
730 | return result; |
---|
731 | } |
---|
732 | |
---|
733 | /** |
---|
734 | * Tests if the given plane and ray intersect with each other. |
---|
735 | * |
---|
736 | * @param ray - the Ray |
---|
737 | * @param plane - the Plane |
---|
738 | * @param t - t gives you the intersection point: |
---|
739 | * isect_point = ray.origin + ray.dir * t |
---|
740 | * |
---|
741 | * @return true if the ray intersects the plane. |
---|
742 | * @note If ray is parallel to plane: t=0, ret:true -> on plane, ret:false -> No hit |
---|
743 | */ |
---|
744 | template<class DATA_TYPE> |
---|
745 | bool intersect( const Plane<DATA_TYPE>& plane, const Ray<DATA_TYPE>& ray, DATA_TYPE& t ) |
---|
746 | { |
---|
747 | const float eps(0.00001f); |
---|
748 | |
---|
749 | // t = -(n·P + d) |
---|
750 | Vec<DATA_TYPE, 3> N( plane.getNormal() ); |
---|
751 | float denom( dot(N,ray.getDir()) ); |
---|
752 | if(gmtl::Math::abs(denom) < eps) // Ray parallel to plane |
---|
753 | { |
---|
754 | t = 0; |
---|
755 | if(distance(plane, ray.mOrigin) < eps) // Test for ray on plane |
---|
756 | { return true; } |
---|
757 | else |
---|
758 | { return false; } |
---|
759 | } |
---|
760 | t = dot( N, Vec<DATA_TYPE,3>(N * plane.getOffset() - ray.getOrigin()) ) / denom; |
---|
761 | |
---|
762 | return (DATA_TYPE)0 <= t; |
---|
763 | } |
---|
764 | |
---|
765 | /** |
---|
766 | * Tests if the given plane and lineseg intersect with each other. |
---|
767 | * |
---|
768 | * @param ray - the lineseg |
---|
769 | * @param plane - the Plane |
---|
770 | * @param t - t gives you the intersection point: |
---|
771 | * isect_point = lineseg.origin + lineseg.dir * t |
---|
772 | * |
---|
773 | * @return true if the lineseg intersects the plane. |
---|
774 | */ |
---|
775 | template<class DATA_TYPE> |
---|
776 | bool intersect( const Plane<DATA_TYPE>& plane, const LineSeg<DATA_TYPE>& seg, DATA_TYPE& t ) |
---|
777 | { |
---|
778 | bool res(intersect(plane, static_cast<Ray<DATA_TYPE> >(seg), t)); |
---|
779 | return res && t <= (DATA_TYPE)1.0; |
---|
780 | } |
---|
781 | |
---|
782 | /** |
---|
783 | * Tests if the given triangle and ray intersect with each other. |
---|
784 | * |
---|
785 | * @param tri - the triangle (ccw ordering) |
---|
786 | * @param ray - the ray |
---|
787 | * @param u,v - tangent space u/v coordinates of the intersection |
---|
788 | * @param t - an indicator of the intersection location |
---|
789 | * @post t gives you the intersection point: |
---|
790 | * isect = ray.dir * t + ray.origin |
---|
791 | * @return true if the ray intersects the triangle. |
---|
792 | * @see from http://www.acm.org/jgt/papers/MollerTrumbore97/code.html |
---|
793 | */ |
---|
794 | template<class DATA_TYPE> |
---|
795 | bool intersect( const Tri<DATA_TYPE>& tri, const Ray<DATA_TYPE>& ray, |
---|
796 | float& u, float& v, float& t ) |
---|
797 | { |
---|
798 | const float EPSILON = (DATA_TYPE)0.00001f; |
---|
799 | Vec<DATA_TYPE, 3> edge1, edge2, tvec, pvec, qvec; |
---|
800 | float det,inv_det; |
---|
801 | |
---|
802 | /* find vectors for two edges sharing vert0 */ |
---|
803 | edge1 = tri[1] - tri[0]; |
---|
804 | edge2 = tri[2] - tri[0]; |
---|
805 | |
---|
806 | /* begin calculating determinant - also used to calculate U parameter */ |
---|
807 | gmtl::cross( pvec, ray.getDir(), edge2 ); |
---|
808 | |
---|
809 | /* if determinant is near zero, ray lies in plane of triangle */ |
---|
810 | det = gmtl::dot( edge1, pvec ); |
---|
811 | |
---|
812 | if (det < EPSILON) |
---|
813 | return false; |
---|
814 | |
---|
815 | /* calculate distance from vert0 to ray origin */ |
---|
816 | tvec = ray.getOrigin() - tri[0]; |
---|
817 | |
---|
818 | /* calculate U parameter and test bounds */ |
---|
819 | u = gmtl::dot( tvec, pvec ); |
---|
820 | if (u < 0.0 || u > det) |
---|
821 | return false; |
---|
822 | |
---|
823 | /* prepare to test V parameter */ |
---|
824 | gmtl::cross( qvec, tvec, edge1 ); |
---|
825 | |
---|
826 | /* calculate V parameter and test bounds */ |
---|
827 | v = gmtl::dot( ray.getDir(), qvec ); |
---|
828 | if (v < 0.0 || u + v > det) |
---|
829 | return false; |
---|
830 | |
---|
831 | /* calculate t, scale parameters, ray intersects triangle */ |
---|
832 | t = gmtl::dot( edge2, qvec ); |
---|
833 | inv_det = ((DATA_TYPE)1.0) / det; |
---|
834 | t *= inv_det; |
---|
835 | u *= inv_det; |
---|
836 | v *= inv_det; |
---|
837 | |
---|
838 | // test if t is within the ray boundary (when t >= 0) |
---|
839 | return t >= (DATA_TYPE)0; |
---|
840 | } |
---|
841 | |
---|
842 | /** |
---|
843 | * Tests if the given triangle and line segment intersect with each other. |
---|
844 | * |
---|
845 | * @param tri - the triangle (ccw ordering) |
---|
846 | * @param lineseg - the line segment |
---|
847 | * @param u,v - tangent space u/v coordinates of the intersection |
---|
848 | * @param t - an indicator of the intersection point |
---|
849 | * @post t gives you the intersection point: |
---|
850 | * isect = lineseg.getDir() * t + lineseg.getOrigin() |
---|
851 | * |
---|
852 | * @return true if the line segment intersects the triangle. |
---|
853 | */ |
---|
854 | template<class DATA_TYPE> |
---|
855 | bool intersect( const Tri<DATA_TYPE>& tri, const LineSeg<DATA_TYPE>& lineseg, |
---|
856 | float& u, float& v, float& t ) |
---|
857 | { |
---|
858 | const DATA_TYPE eps = (DATA_TYPE)0.0001010101; |
---|
859 | DATA_TYPE l = length( lineseg.getDir() ); |
---|
860 | if (eps < l) |
---|
861 | { |
---|
862 | Ray<DATA_TYPE> temp( lineseg.getOrigin(), lineseg.getDir() ); |
---|
863 | bool result = intersect( tri, temp, u, v, t ); |
---|
864 | return result && t <= (DATA_TYPE)1.0; |
---|
865 | } |
---|
866 | else |
---|
867 | { return false; } |
---|
868 | } |
---|
869 | } |
---|
870 | |
---|
871 | |
---|
872 | |
---|
873 | #endif |
---|