1 | /************************************************************** ggt-head beg |
---|
2 | * |
---|
3 | * GGT: Generic Graphics Toolkit |
---|
4 | * |
---|
5 | * Original Authors: |
---|
6 | * Allen Bierbaum |
---|
7 | * |
---|
8 | * ----------------------------------------------------------------- |
---|
9 | * File: GaussPointsFit.h,v |
---|
10 | * Date modified: 2002/01/31 01:16:22 |
---|
11 | * Version: 1.3 |
---|
12 | * ----------------------------------------------------------------- |
---|
13 | * |
---|
14 | *********************************************************** ggt-head end */ |
---|
15 | /*************************************************************** ggt-cpr beg |
---|
16 | * |
---|
17 | * GGT: The Generic Graphics Toolkit |
---|
18 | * Copyright (C) 2001,2002 Allen Bierbaum |
---|
19 | * |
---|
20 | * This library is free software; you can redistribute it and/or |
---|
21 | * modify it under the terms of the GNU Lesser General Public |
---|
22 | * License as published by the Free Software Foundation; either |
---|
23 | * version 2.1 of the License, or (at your option) any later version. |
---|
24 | * |
---|
25 | * This library is distributed in the hope that it will be useful, |
---|
26 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
27 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
28 | * Lesser General Public License for more details. |
---|
29 | * |
---|
30 | * You should have received a copy of the GNU Lesser General Public |
---|
31 | * License along with this library; if not, write to the Free Software |
---|
32 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
33 | * |
---|
34 | ************************************************************ ggt-cpr end */ |
---|
35 | // Based on code from: |
---|
36 | // Magic Software, Inc. |
---|
37 | // http://www.magic-software.com |
---|
38 | // |
---|
39 | #ifndef _GMTL_GAUSSPOINTSFIT_H |
---|
40 | #define _GMTL_GAUSSPOINTSFIT_H |
---|
41 | |
---|
42 | // Fit points with a Gaussian distribution. The center is the mean of the |
---|
43 | // points, the axes are the eigenvectors of the covariance matrix, and the |
---|
44 | // extents are the eigenvalues of the covariance matrix and are returned in |
---|
45 | // increasing order. The last two functions allow selection of valid |
---|
46 | // vertices from a pool. The return value is 'true' if and only if at least |
---|
47 | // one vertex was valid. |
---|
48 | |
---|
49 | #include <gmtl/Vec3.h> |
---|
50 | #include <gmtl/Point3.h> |
---|
51 | #include <gmtl/Numerics/Eigen.h> |
---|
52 | |
---|
53 | namespace gmtl |
---|
54 | { |
---|
55 | |
---|
56 | /* |
---|
57 | void MgcGaussPointsFit (int iQuantity, const MgcVector2* akPoint, |
---|
58 | MgcVector2& rkCenter, MgcVector2 akAxis[2], MgcReal afExtent[2]); |
---|
59 | */ |
---|
60 | |
---|
61 | void GaussPointsFit (int iQuantity, const Point3* akPoint, |
---|
62 | Point3& rkCenter, Vec3 akAxis[3], float afExtent[3]); |
---|
63 | |
---|
64 | /* |
---|
65 | bool MgcGaussPointsFit (int iQuantity, const MgcVector2* akPoint, |
---|
66 | const bool* abValid, MgcVector2& rkCenter, MgcVector2 akAxis[2], |
---|
67 | MgcReal afExtent[2]); |
---|
68 | */ |
---|
69 | |
---|
70 | bool GaussPointsFit (int iQuantity, const Vec3* akPoint, |
---|
71 | const bool* abValid, Vec3& rkCenter, Vec3 akAxis[3], |
---|
72 | float afExtent[3]); |
---|
73 | |
---|
74 | |
---|
75 | // --- Implementations ---- // |
---|
76 | void GaussPointsFit (int iQuantity, const Point3* akPoint, |
---|
77 | Point3& rkCenter, Vec3 akAxis[3], float afExtent[3]) |
---|
78 | { |
---|
79 | // compute mean of points |
---|
80 | rkCenter = akPoint[0]; |
---|
81 | unsigned i; |
---|
82 | for (i = 1; i < iQuantity; i++) |
---|
83 | rkCenter += akPoint[i]; |
---|
84 | float fInvQuantity = 1.0f/iQuantity; |
---|
85 | rkCenter *= fInvQuantity; |
---|
86 | |
---|
87 | // compute covariances of points |
---|
88 | float fSumXX = 0.0, fSumXY = 0.0, fSumXZ = 0.0; |
---|
89 | float fSumYY = 0.0, fSumYZ = 0.0, fSumZZ = 0.0; |
---|
90 | for (i = 0; i < iQuantity; i++) |
---|
91 | { |
---|
92 | Vec3 kDiff = akPoint[i] - rkCenter; |
---|
93 | fSumXX += kDiff[Xelt]*kDiff[Xelt]; |
---|
94 | fSumXY += kDiff[Xelt]*kDiff[Yelt]; |
---|
95 | fSumXZ += kDiff[Xelt]*kDiff[Zelt]; |
---|
96 | fSumYY += kDiff[Yelt]*kDiff[Yelt]; |
---|
97 | fSumYZ += kDiff[Yelt]*kDiff[Zelt]; |
---|
98 | fSumZZ += kDiff[Zelt]*kDiff[Zelt]; |
---|
99 | } |
---|
100 | fSumXX *= fInvQuantity; |
---|
101 | fSumXY *= fInvQuantity; |
---|
102 | fSumXZ *= fInvQuantity; |
---|
103 | fSumYY *= fInvQuantity; |
---|
104 | fSumYZ *= fInvQuantity; |
---|
105 | fSumZZ *= fInvQuantity; |
---|
106 | |
---|
107 | // compute eigenvectors for covariance matrix |
---|
108 | gmtl::Eigen kES(3); |
---|
109 | kES.Matrix(0,0) = fSumXX; |
---|
110 | kES.Matrix(0,1) = fSumXY; |
---|
111 | kES.Matrix(0,2) = fSumXZ; |
---|
112 | kES.Matrix(1,0) = fSumXY; |
---|
113 | kES.Matrix(1,1) = fSumYY; |
---|
114 | kES.Matrix(1,2) = fSumYZ; |
---|
115 | kES.Matrix(2,0) = fSumXZ; |
---|
116 | kES.Matrix(2,1) = fSumYZ; |
---|
117 | kES.Matrix(2,2) = fSumZZ; |
---|
118 | kES.IncrSortEigenStuff3(); |
---|
119 | |
---|
120 | akAxis[0][Xelt] = kES.GetEigenvector(0,0); |
---|
121 | akAxis[0][Yelt] = kES.GetEigenvector(1,0); |
---|
122 | akAxis[0][Zelt] = kES.GetEigenvector(2,0); |
---|
123 | |
---|
124 | akAxis[1][Xelt] = kES.GetEigenvector(0,1); |
---|
125 | akAxis[1][Yelt] = kES.GetEigenvector(1,1); |
---|
126 | akAxis[1][Zelt] = kES.GetEigenvector(2,1); |
---|
127 | |
---|
128 | akAxis[2][Xelt] = kES.GetEigenvector(0,2); |
---|
129 | akAxis[2][Yelt] = kES.GetEigenvector(1,2); |
---|
130 | akAxis[2][Zelt] = kES.GetEigenvector(2,2); |
---|
131 | |
---|
132 | afExtent[0] = kES.GetEigenvalue(0); |
---|
133 | afExtent[1] = kES.GetEigenvalue(1); |
---|
134 | afExtent[2] = kES.GetEigenvalue(2); |
---|
135 | } |
---|
136 | |
---|
137 | |
---|
138 | // |
---|
139 | bool GaussPointsFit (int iQuantity, const Vec3* akPoint, |
---|
140 | const bool* abValid, Vec3& rkCenter, Vec3 akAxis[3], |
---|
141 | float afExtent[3]) |
---|
142 | { |
---|
143 | // compute mean of points |
---|
144 | rkCenter = ZeroVec3; |
---|
145 | int i, iValidQuantity = 0; |
---|
146 | for (i = 0; i < iQuantity; i++) |
---|
147 | { |
---|
148 | if ( abValid[i] ) |
---|
149 | { |
---|
150 | rkCenter += akPoint[i]; |
---|
151 | iValidQuantity++; |
---|
152 | } |
---|
153 | } |
---|
154 | if ( iValidQuantity == 0 ) |
---|
155 | return false; |
---|
156 | |
---|
157 | float fInvQuantity = 1.0/iValidQuantity; |
---|
158 | rkCenter *= fInvQuantity; |
---|
159 | |
---|
160 | // compute covariances of points |
---|
161 | float fSumXX = 0.0, fSumXY = 0.0, fSumXZ = 0.0; |
---|
162 | float fSumYY = 0.0, fSumYZ = 0.0, fSumZZ = 0.0; |
---|
163 | for (i = 0; i < iQuantity; i++) |
---|
164 | { |
---|
165 | if ( abValid[i] ) |
---|
166 | { |
---|
167 | Vec3 kDiff = akPoint[i] - rkCenter; |
---|
168 | fSumXX += kDiff[Xelt]*kDiff[Xelt]; |
---|
169 | fSumXY += kDiff[Xelt]*kDiff[Yelt]; |
---|
170 | fSumXZ += kDiff[Xelt]*kDiff[Zelt]; |
---|
171 | fSumYY += kDiff[Yelt]*kDiff[Yelt]; |
---|
172 | fSumYZ += kDiff[Yelt]*kDiff[Zelt]; |
---|
173 | fSumZZ += kDiff[Zelt]*kDiff[Zelt]; |
---|
174 | } |
---|
175 | } |
---|
176 | fSumXX *= fInvQuantity; |
---|
177 | fSumXY *= fInvQuantity; |
---|
178 | fSumXZ *= fInvQuantity; |
---|
179 | fSumYY *= fInvQuantity; |
---|
180 | fSumYZ *= fInvQuantity; |
---|
181 | fSumZZ *= fInvQuantity; |
---|
182 | |
---|
183 | // compute eigenvectors for covariance matrix |
---|
184 | Eigen kES(3); |
---|
185 | kES.Matrix(0,0) = fSumXX; |
---|
186 | kES.Matrix(0,1) = fSumXY; |
---|
187 | kES.Matrix(0,2) = fSumXZ; |
---|
188 | kES.Matrix(1,0) = fSumXY; |
---|
189 | kES.Matrix(1,1) = fSumYY; |
---|
190 | kES.Matrix(1,2) = fSumYZ; |
---|
191 | kES.Matrix(2,0) = fSumXZ; |
---|
192 | kES.Matrix(2,1) = fSumYZ; |
---|
193 | kES.Matrix(2,2) = fSumZZ; |
---|
194 | kES.IncrSortEigenStuff3(); |
---|
195 | |
---|
196 | akAxis[0][Xelt] = kES.GetEigenvector(0,0); |
---|
197 | akAxis[0][Yelt] = kES.GetEigenvector(1,0); |
---|
198 | akAxis[0][Zelt] = kES.GetEigenvector(2,0); |
---|
199 | |
---|
200 | akAxis[1][Xelt] = kES.GetEigenvector(0,1); |
---|
201 | akAxis[1][Yelt] = kES.GetEigenvector(1,1); |
---|
202 | akAxis[1][Zelt] = kES.GetEigenvector(2,1); |
---|
203 | |
---|
204 | akAxis[2][Xelt] = kES.GetEigenvector(0,2); |
---|
205 | akAxis[2][Yelt] = kES.GetEigenvector(1,2); |
---|
206 | akAxis[2][Zelt] = kES.GetEigenvector(2,2); |
---|
207 | |
---|
208 | afExtent[0] = kES.GetEigenvalue(0); |
---|
209 | afExtent[1] = kES.GetEigenvalue(1); |
---|
210 | afExtent[2] = kES.GetEigenvalue(2); |
---|
211 | |
---|
212 | return true; |
---|
213 | } |
---|
214 | |
---|
215 | }; |
---|
216 | |
---|
217 | /* |
---|
218 | void MgcGaussPointsFit (int iQuantity, const MgcVector2* akPoint, |
---|
219 | MgcVector2& rkCenter, MgcVector2 akAxis[2], float afExtent[2]) |
---|
220 | { |
---|
221 | // compute mean of points |
---|
222 | rkCenter = akPoint[0]; |
---|
223 | int i; |
---|
224 | for (i = 1; i < iQuantity; i++) |
---|
225 | rkCenter += akPoint[i]; |
---|
226 | float fInvQuantity = 1.0/iQuantity; |
---|
227 | rkCenter *= fInvQuantity; |
---|
228 | |
---|
229 | // compute covariances of points |
---|
230 | float fSumXX = 0.0, fSumXY = 0.0, fSumYY = 0.0; |
---|
231 | for (i = 0; i < iQuantity; i++) |
---|
232 | { |
---|
233 | MgcVector2 kDiff = akPoint[i] - rkCenter; |
---|
234 | fSumXX += kDiff.x*kDiff.x; |
---|
235 | fSumXY += kDiff.x*kDiff.y; |
---|
236 | fSumYY += kDiff.y*kDiff.y; |
---|
237 | } |
---|
238 | fSumXX *= fInvQuantity; |
---|
239 | fSumXY *= fInvQuantity; |
---|
240 | fSumYY *= fInvQuantity; |
---|
241 | |
---|
242 | // solve eigensystem of covariance matrix |
---|
243 | MgcEigen kES(2); |
---|
244 | kES.Matrix(0,0) = fSumXX; |
---|
245 | kES.Matrix(0,1) = fSumXY; |
---|
246 | kES.Matrix(1,0) = fSumXY; |
---|
247 | kES.Matrix(1,1) = fSumYY; |
---|
248 | kES.IncrSortEigenStuff2(); |
---|
249 | |
---|
250 | akAxis[0].x = kES.GetEigenvector(0,0); |
---|
251 | akAxis[0].y = kES.GetEigenvector(1,0); |
---|
252 | akAxis[1].x = kES.GetEigenvector(0,1); |
---|
253 | akAxis[1].y = kES.GetEigenvector(1,1); |
---|
254 | |
---|
255 | afExtent[0] = kES.GetEigenvalue(0); |
---|
256 | afExtent[1] = kES.GetEigenvalue(1); |
---|
257 | } |
---|
258 | */ |
---|
259 | |
---|
260 | |
---|
261 | /* |
---|
262 | bool MgcGaussPointsFit (int iQuantity, const MgcVector2* akPoint, |
---|
263 | const bool* abValid, MgcVector2& rkCenter, MgcVector2 akAxis[2], |
---|
264 | float afExtent[2]) |
---|
265 | { |
---|
266 | // compute mean of points |
---|
267 | rkCenter = MgcVector2::ZERO; |
---|
268 | int i, iValidQuantity = 0; |
---|
269 | for (i = 0; i < iQuantity; i++) |
---|
270 | { |
---|
271 | if ( abValid[i] ) |
---|
272 | { |
---|
273 | rkCenter += akPoint[i]; |
---|
274 | iValidQuantity++; |
---|
275 | } |
---|
276 | } |
---|
277 | if ( iValidQuantity == 0 ) |
---|
278 | return false; |
---|
279 | |
---|
280 | float fInvQuantity = 1.0/iValidQuantity; |
---|
281 | rkCenter *= fInvQuantity; |
---|
282 | |
---|
283 | // compute covariances of points |
---|
284 | float fSumXX = 0.0, fSumXY = 0.0, fSumYY = 0.0; |
---|
285 | for (i = 0; i < iQuantity; i++) |
---|
286 | { |
---|
287 | if ( abValid[i] ) |
---|
288 | { |
---|
289 | MgcVector2 kDiff = akPoint[i] - rkCenter; |
---|
290 | fSumXX += kDiff.x*kDiff.x; |
---|
291 | fSumXY += kDiff.x*kDiff.y; |
---|
292 | fSumYY += kDiff.y*kDiff.y; |
---|
293 | } |
---|
294 | } |
---|
295 | fSumXX *= fInvQuantity; |
---|
296 | fSumXY *= fInvQuantity; |
---|
297 | fSumYY *= fInvQuantity; |
---|
298 | |
---|
299 | // solve eigensystem of covariance matrix |
---|
300 | MgcEigen kES(2); |
---|
301 | kES.Matrix(0,0) = fSumXX; |
---|
302 | kES.Matrix(0,1) = fSumXY; |
---|
303 | kES.Matrix(1,0) = fSumXY; |
---|
304 | kES.Matrix(1,1) = fSumYY; |
---|
305 | kES.IncrSortEigenStuff2(); |
---|
306 | |
---|
307 | akAxis[0].x = kES.GetEigenvector(0,0); |
---|
308 | akAxis[0].y = kES.GetEigenvector(1,0); |
---|
309 | akAxis[1].x = kES.GetEigenvector(0,1); |
---|
310 | akAxis[1].y = kES.GetEigenvector(1,1); |
---|
311 | |
---|
312 | afExtent[0] = kES.GetEigenvalue(0); |
---|
313 | afExtent[1] = kES.GetEigenvalue(1); |
---|
314 | |
---|
315 | return true; |
---|
316 | } |
---|
317 | */ |
---|
318 | |
---|
319 | #endif |
---|